odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 11, No. 4, pp. 1141-1151 (2024) I\/I @P”ti"g

athematical

_ The behaviours of convergents in f-expansions: computational
insights based on f-expansions algorithm using the Maple software

Muhammad K. N.!, Kamarulhaili H.2, Asbullah M. A.', Sapar S. H.?

L Centre for Foundation Studies in Science of Universiti Putra Malaysia,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
28chool of Mathematical Sciences, University Sains Malaysia,
11800 USM, Penang, Malaysia
3 Department of Mathematics and Statistics, Faculty of Science,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

(Received 12 July 2024; Accepted 25 November 2024)

Continued fractions arise naturally in long division and the theory of the approximation
to real numbers by rational numbers. This research considered the implementation on the
convergent of f-expansions of real numbers of z € (0,6) with 0 < § < 1. The convergent of
f-expansions are also called as #-convergent of continued fraction expansions. This study
aimed to establish the properties for a family of 6-convergent in f-expansions. The idea of
discovering the behaviours of §-convergent evolved from the concept of regular continued
fraction (RCF) expansion and sequences involved in #-expansions. The #-expansions al-
gorithm was used to compute the values of #-convergent with the help of Maple software.
Consequently, it proved to be an efficient method for fast computer implementation. The
growth rate of #-convergent was investigated to highlight the performance of #-convergent.
The analysis on 6-convergent revealed the convergent that gives a better approximation
yielding to fewer convergence errors. This whole paper thoroughly derived the behaviours
of f-convergent, which measure how well a number x is approximated by its convergents
for almost all irrational numbers.

Keywords: 6-convergent; 0-expansions; 0-expansions algorithm; continued fraction; con-
vergence errors.
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1. Introduction

In many years, continued fractions had evolved along with the curiosity in solving many problems
including expanded irrational square roots, computed continued fraction of differential equations by
Lagrange’s method [1], computed continued fraction of 7 [2], convergence theory [3] and others. Thus,
variants of continued fractions were created in the quest to explore and to establish more results related
to continued fractions.
A continued fraction (({an},{bn}),{zn}) is often denoted by the expression as follows:
ay
by + —%2

e an
'+bn

T, = by +

The numbers a,, and b,, are called the nth partial numerator and denominator of the continued fraction,
respectively. Sometimes, they are simply called the elements; x, is called the nth approximant. If
{an} and {b,} are infinite sequences, then (({an}, {bn}), {xn}) is called an infinite (or non-terminating)
continued fraction. It is called a finite (or terminating) continued fraction if {a,} and {b,} have only
a finite number of terms ay, a9, ..., ay, and by, by,...,bmn.

The origin of continued fractions is traditionally placed at the time of the creation of Euclid’s
algorithm [4]. The Euclidean algorithm involves the division of the larger integer by the smaller, the
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smaller by the remainder, the first remainder by the second remainder, and so on until the exact
division is obtained whence the greatest common divisor (GCD) is the exact divisor.

An Indian Mathematician, Aryabhata, used a continued fraction to solve a linear indeterminate
equation [4], which refers to the equation that cannot be directly solved from the given information.
For instance,

ar+by=c, z?—Py®=1.
Rather than generalizing this method, the author used the continued fractions in specific examples.
Continued fraction became a field in its right through the work of John Wallis [5]. The theory concern-

ing continued fractions was significantly developed, especially that concerning the convergents. The
convergent of a continued fraction is presented as follows [6].

Definition 1. The continued fraction made from |ag, a1, a2, ..., ay,] by cutting off the expansion after
the kth partial denominator ay is called the kth convergent of the given continued fraction and denoted
by C; in symbols,

Ck = lag,a1,...,ar], 0<k<n.

Let the zeroth convergent Cy be equal to the number ag.

Wallis [7] established many of the basic properties of convergents in his book entitled Arithmetica
Infinitorum. Next, Bosma and Kraaikamp [6] derived the distribution of the sequence 6,,(x),>1, which
measures how well a number x is approximated by its convergents for almost all irrational numbers.

Subsequently, Elsner and Komatsu [8] studied the leaping convergents Z;Zﬁ for the continued fraction

of e = |2;(1,2k,1)]32, and leaping convergents % for the continued fraction of ev = |1; (s(2k —
1) —1,1,1)|22, where s > 2. They obtained some arithmetic properties and extended such results for
further general continued fractions. As one of the applications, they showed a new recurrence formula
for leaping convergents of Apery’s continued fraction of {(3).

Since the beginning of the 20th century, continued fractions have made their appearances in other
fields. For instance, much research has examined the connection between continued fractions and other
fields relative to the chaos theory. Besides that, continued fractions are being utilized within computer
algorithms for computing rational approximations to real numbers as well as solving indeterminate
equations. Numerous studies, including solving Pell’s equation using continued fractions [9], apply-
ing continued fractions in the field of cryptography [10, 11|, and continued fraction expansions that
contribute to the Gauss map [12], invariant measure [13], Lebesgue measure [13], and ergodicity in
dynamical systems [14], show the development of this subject.

In previous works, many researchers explored the development of various types of continued frac-
tions such as regular continued fraction (RCF) [15], generalized continued fraction (GCF) [16], nearest
integer continued fraction (NICF) [17], semi-regular continued fraction (SRCF) [18], optimal continued
fraction (OCF) [6], Engel continued fraction (ECF) [13], and -expansions [19]. §-expansions have con-
tributed to solving many problems, especially in the ergodic system [20-24]. The idea of §-expansions
has been motivated and implemented by RCF expansions which contributed to many applications.
One of the most important uses is called the Gauss—Kuzmin theorem in the metrical theory of 8-
expansions. Previous research has solved a Gauss—Kuzmin problem for #-expansions [21,22]. They
applied the theory of random systems with complete connections extensively studied by losifescu and
Grigorescu [25] and the method of Rockett and Szusz [26] to solve the Gauss—Kuzmin problem.

Recently, the view of #-expansions has been expanded through the studies made by Muhammad
and Kamarulhaili [27]. Based on the samples in that research, it was clearly shown that 0 < 6§ < 1
affects the behavior of #-expansions and tends to make it different from the RCF expansions. From
that paper, they have listed the similarities and differences for both 8 and RCF expansions. Hence,
in this paper, our concern is to critically examine the behaviors of convergents in #-expansions and
observe the performance of 0 < 6 < 1 towards the growth rate of convergents.
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2. Mathematical preliminaries

Chakraborty and Rao [19] solved the problems in random continued fraction expansions related to
f-expansions. The problem includes the symbolic dynamics of the map Ty: [0,0] — [0,6] and the
existence of absolutely continuous invariant probability. The value of € is fixed within 0 < 8 < 1 and
x € (0,0), where z is referred to the irrational number, x € Q¢ € R. The #-expansion is defined as
follows [27].

Definition 2. For any x € (0,0) and 0 < 6 < 1, let x be the #-continued fraction expansion of x,
and its expansion is as follows:

xr = a09 + 1 ) (1)
a6 +
! 1
aof +
asf +
’ 1
.+
0+ -
a —_
n Rn
where R, = [an+10, an420, ant30,...] and a,’s are non-negative integers. The expansion in equation (1)

is also called the 0-expansion of x with agf = 0 and a,, € R where a, > 0. Such a,’s are called the
f-continued fraction digits of x with respect to this expansion.

Equation (1) can be written as z = [agf, a160, a20,as30, ... a0+ R%L] If x € Q, then the #-expansion
is finite as x has a finite f-expansion. Meanwhile, if x € Q¢ then the #-expansion is infinite as x has
an infinite f-expansion. This statement means those real numbers expressible as finite #-expansion
are precisely the rational numbers, while those real numbers expressible as infinite #-expansion are
precisely the irrational numbers. So, all real numbers have representations as 6-expansion, where the
rational numbers are characterized by having finite representations and the irrational numbers are
characterized by having infinite representations. Hence, the expansion in equation (1) is an infinite
f-expansion or non-terminating expansion. While, the finite f-expansion will terminate at the nth step
and the expansion is as follows:

1
x = apb + 1 . (2)
CL19 +
1
CL29 +
R m
Then, equation (2) can be written as x = [agf, a160,as0, ..., a,0]. Next, the convergent of #-expansions

is defined as follows [19].
Definition 3. For any x € (0,0) and 0 < 0 < 1,
Cp = [apb,a160,a20,a30, ..., a,0]
is defined as the n-th order of f-convergent of continued fraction expansions.
Much of the labor in calculating the #-convergents can be avoided by establishing formulas for their
numerators and denominators. Hence, this leads to the following recurrence relations [27].
Theorem 1. Let © = [a10,a20,a30,...,a,0 + R%z]’ where R, = [an410,an420,an4+30,...] be an
infinite 0-expansion of continued fraction. Then, we have recurrence relations for n € N:
po=aol, p1=apbar0+1, p,=anlpn_1+pn_2;
o=1 qg=al, ¢ =abg-1+gn-2. (3)
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Theorem 2. Let x = [a160,a90,a30,...,a,0 + R%L]’ where R, = [ap+10, ant20,an430,...] be an infi-
nite f-expansion of continued fraction. Define pqg, p1,p2,-..,Pn and qo,q1,q2,---,qn by the recurrence
relations of equation (3). Then, we have the n-th order of §-convergent of continued fraction expansions
based on those recurrence relations as

Pn
C =" 4
" @
From the equations (1), (3), and (4), f-expansion now has n terms, which is
Dn + Rann—l
Ty = ———, (5)
qn + R, dn—1
with R, = [an410, ant20,an430,...] = z,41. Based on the recurrence relations in equation (3), we
have the following property [27].
Lemma 1. Let x = [aoe, a10,a90,a30,...,a,0 + R%L] be an infinite #-expansion of a continued frac-
tion, where R, = xnp11 With pp, = an0pn_1 + pn—2 and ¢, = an0¢n—1 + qn—2. Then,
Pndn—-1 — Pn—14n = (_1)n—1 for n > 0. (6)
Next, from Theorem 1, we obtain the following consequences as indicated in the following corollaries.
Corollary 1. Let z = [aoﬁ,alﬁ,aﬁ,ag@, e, Gn0 + R%J be an infinite #-expansion of a continued
fraction, where R, = xp+1. Cp = laph,a10,a420,...,a,0] = ‘Z—Z is defined as 0-convergent, where
Pn = anBpp_1 + pp—2 and q, = anlq,—1 + qn—2. Hence, we have
(_1)n—l
Ch—Cho1=——, n=1l (7)
dndn—1
Corollary 2. Let z = [a09,a19,a29,a36, oo apf + R%z] be an infinite 6-expansion of a continued
fraction, where R, = zp+1. Cp, = laph,a10,a420,...,a,0] = ‘Z—Z is defined as 0-convergent, where
Pn = anOpp_1+ ppn—2 and q, = a,fqy_1 + go—2. Hence, we have
—1)"a,0
Cn—Cn_2:u n>2. (8)
dndn—2

Corollary 1 and Corollary 2 are important in the extension of the finite 6-expansions to the infinite

f-expansions, which are obtained by expanding the 6-convergent C,, = Z_Z'

3. Results and discussions

In this section, we will discuss the behaviours and examine the patterns of #-convergent with their
numerical computations.

3.1. Theoretical behaviours of #-convergent

Corollary 1 and Corollary 2 give us important information that the f-convergent, C,, changes as n
increases. f-convergent can be defined as the even #-convergent or the odd 6-convergent. The n-th
order of f-convergent will verify whether the #-convergent is even or odd. Even #-convergent occurred
when the value of n of n-th order is an even number such as Cs, Cy, Cg, Cs, . ... While, odd 8-convergent
occurred when the value of n of n-th order is an odd number such as C1, C3, C5, C7, .... The previous
two corollaries lead to the following theorems, regarding the properties of the even #-convergent and
the odd #-convergent.

Theorem 3. Let x = [a09,a19,a29,a39, e, anl + R%L] be an infinite #-expansion of a continued
fraction where R, = xp41. Cn = [agf,a16,a90, ..., a,0] = Z—: is defined as @-convergent where p, =

n0pn—1 + Pn—o and q, = apfq,_1 + gn_o. Subsequently, every value of even 0-convergent is less than
every value of odd #-convergent.
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Proof. By Corollary 1, we have

Cn N Cn—l _ ]ﬁ N Prn-1 _ PnQn—1 — pn—lQn' (9)
dn n—1 dndn-—1
Then, we substitute equation (6) into equation (9), we obtain
-1 n—1
Cn—Cn_lz(#, n > 1.
dndn-—1

For the even case, if we set n = 2, then we obtain

(=)'

02 — 01 = < 0, (10)
q291
which satisfies g, is always positive. Then, from equation (10), we obtain
02 < 01. (11)
Now, we set n as even with n > 2 using the same formula as in equation (7), and we observe
Cy<(Cy, Cog<Cs Csg<Cr Cip<Cy, .... (12)
Next, for the odd case, using n = 3 and substituting into equation (7), we obtain
(-1)
Cs—Cy = > 0, (13)
q3q2
which satisfies g, is always positive. From equation (13), we have
C3 > Cs. (14)
Then, we set n as odd with n > 3, by Corollary 1, we will obtain the following inequalities:
Cs > 04, C7 > 06, Cy > 08, Ci1 > 010, e (15)
Based on equations (11), (12), (14), (15), we found that every value of even #-convergent is always less
than every value of odd #-convergent as desired. ]
Theorem 4. Let x = [aoﬁ,alﬁ,@@,ag@, sy anl + R%J be an infinite 6-expansion of a continued
fraction where Ry, = xp4+1. Cp = [agf,a10,a20, ... a,0] = Z—Z is defined as 0-convergent where p, =
nO0pn_1 + pn_s and q, = apfq,._1 + gn_2. Hence, we have
1. The even 0-convergent, Cy, Co, Cy, ... forms a strictly increasing sequence of real numbers, such
that
Co<Co<Cy<.... (16)
2. The odd @-convergent, Cy, C5, Cs, ... forms a strictly decreasing sequence of real numbers, such
that
Ci>C3>C5>.... (17)
Proof. By Corollary 2, we have
Cn - Cn—2 = @ - pn—2'
dn qn—2

By simplifying the above equation, we have
an0(Pr—1qn—2 — Pn—20n—
Cn o Cn—2 _ % (pn 14n—2 Pn—24n 1)' (18)
dnQn—2
Next, when substituting equation (6) into equation (18), we obtain

a0(-1)""%  (=1)"a,0

Cp,—Ch_o= = , n=2.
qnqn—2 qnqn—2
For the even case, if we set n = 2, we will have
—1)%azf
Oy = Tl (19)
4240

where ¢, is always positive. From equation (19), we will obtain

Cy > Cy. (20)
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We set n as even with n > 2 step-by-step following the above fashion, we obtain the following inequal-
ities:

Co<Cy<Cy<.... (21)
From equation (21), we can see that the even f-convergent forms a strictly increasing sequence of real
numbers as desired. Next, for the odd case, if we set n = 3, we will have

—1)3a30
Cy—y = SVl (22)
q3q1
where ¢, is always positive. From equation (22), we obtain
C3 < (. (23)

Then, we set n as odd with n > 3 using the same step as in equation (22) and we obtain the following
inequalities:

L.< Oy <Oy < (. (24)

From equation (24), we found that the odd #-convergent forms a strictly decreasing sequence of real
numbers as desired. ]
We can regard an infinite #-expansion, x = [a09,a16,a29,a39, e, anl + Rin] as an analog of an

infinite decimal expansion of a real number. Truncating an infinite decimal expansion of an irrational
number produces a rational approximation of the number. The following property of §-convergent
allows us to determine how good the approximation of it on x,,.

Theorem 5. Let x = [aoﬁ, a16,a920,a30, ... a,0 + R%J be an infinite 8-expansion where R, = Tn11
Loy
with z € (0,6) and fixed 6 within the range of 0 < 6 < 1. We set =, = % with the relations
n Ri'n n—
of p, and q, as p, = an0pn_1 + pn_s and q, = apfqg,._1 + g.—o. Hence, we have
+1
o — 22| < . (25)
dn qnqn+1
Proof. From equation (1), we have = = [agf, a10, a20, a0, ..., a,0 + Rin] where R, = Tp41:
1
T = agpb +
g+ _— L
a1t + a2€+"'+an9iﬁ+n

Considering this #-expansion having n terms, we note that x = x,,. Then, applying the formula for the
n-th #-convergent. We are interested in the size of the difference between z,, and %, that is x,, — %,
so from equation (5), we can write
B ]ﬁ _ Rnpn + Pn—1 B ]ﬁ
qn RnQn + gn—1 qn '
By simplifying the above equation, we have
_ Pn_ Pn-149n — Pndn-1
4n Qn(RnQn + Qn—l) ’
From Lemma 1, we have p,_1¢n—pngn—1 = (—1)", which means that p,_1¢, —pngn—1 = £1. Therefore,
Dn +1
dn Qn(RnQn + Qn—l)
Now, since R, > a,0 because a,0 € R and R,, € R is the same real number plus the rest of the 6-
expansions. Now, note that since decreasing the size of the denominator results in making the fraction
larger, then we have

Tn

n

Tn

oy — L2 ! .
An Qn(an+19Qn + Qn—l)
Since we have ay,+10Gn + gn—1 = @nr1, S0 now we have
o Pn < +1
dn gndn+1
as desired. [
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From Theorem 5, we have the following property:

Corollary 3. If 2—: is the nth 0-convergent to the irrational number x, then

1 1
< . (26)
dndn+1 qn

_DPn
an

<

Tn

Proof. From Theorem 5, we have proved that
A P
dn qngn+1
Then, now we need to compare between ¢,q¢,+1 and ¢2 where we have the following equations:

Tn

gndn+1 ::Qn(Qn+l)a
q721 = Gn(qn).
From the behavior of ¢, we have g, > ¢,—1, which gives us ¢,+1 > ¢, and the following inequality:
Inni1 > qa- (27)

So, from equation (27), we obtain
1 1

G2 " Gndnt1
Then, from equation (5), we obtain xz, — Z" as follows:

n

(28)

Tn

o @ _ ‘Rnpn + Pn-1 _ ]ﬁ Pn—19n — Pndn—1
An }%nQn +’Qn—1 dn Qn(}%nQn'+'Qn—1)
From Lemma 1, we have p,—1¢, — Pngn—1 = (—1)". Therefore, we have

Pn 1
Ty ——| = . 29
" qn Qn(}%nQn'+'Qn—1) ( )
Now, we have the denominator of equation (28) and equation (29) as follows:
g = an(dn);
Gn(Bndn + @n—1) = @n(Bngn + qn-1);
where R,qn + ¢n—1 > qn, which then gives us the following inequality:
Qn(}%nQn +’Qn—1) >’Qi- (30)
So, from equation (30), we obtain
1 1
Q% QH(}%nQn'+'Qn—1) ’
1 Pn
— > Ty — — 31
R (31)
Thus, from equation (28) and equation (31), we obtain that
1 1
dn dnqn+1 dn
as desired. ]

Pn+t+2

qn+2
f]i. Thus, each successive convergent provides a better approximation. Hence, the next property of
n

f-convergent is also true in general, and the proof is shown in the next theorem.

In Theorem 4, we showed in general that the convergent provides a better approximation than

Theorem 6. Let x = [aOH,CLlH, asl,asb, ... a0 + R%z] be an irrational number with 6-convergent
*Z—Z, where R, = Tp41, Ppn = @n0pp—1+pn—2, and ¢, = a,0qn—1+qn—2. For every n > 0, the convergents
are successively closer to x, in the sense that
_Pn
dn

Pn—1
dn—1

< |z

n

Tn

: (32)
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Proof. From equation (5), we have

_ Rnpn + Pn-1
" Ryqngn—1
So, if we subtract x, from Z—: and 2 Zj, we obtain the following:
_ 1
- :‘Rnpn+pn 1 Pl _ . (33)
dn RnQn + gn—1 dn Qn(RnQn + Qn—l)
_ Pn—1| Ryupn + pn—1 _ Pn-1| 1 (34)
n - - .
gn—1 RnQn + gn—1 gn—1 Qn—l(RnQn + Qn—l)
Then, we compare the denominators of equations (33) and (34), we have
Qn(RnQn + Qn—l) > Qn—l(RnQn + Qn—l) (35)
since from the behaviour of g,, we have g, > ¢,—1. So, from equation (35), we obtain
1 1
> . (36)
Qn—l(RnQn + Qn—l) Qn(RnQn + Qn—l)
Next, by substituting equations (33) and (34) into equation (36), we obtain
Ty — Pzt Ty — Pni, (37)
qn—1 qn
Finally, rearranging equation (37), we obtain
xn—& < wn—pn_l
dn dn—1
as desired. ]

Next subsection, we discuss the numerical computations to support the theoretical statements on
the behaviours and patterns of #-convergents.

3.2. Numerical results on 6-convergent

This research focuses on the infinite expansions that involve the computation of irrational numbers,
z. To compute the value of f-convergent, 6-Expansions Algorithm is applied where the algorithm is as
follows.

Algorithm 1 6-Expansions Algorithm.

Require: z be a real number, x = g
Ensure: f#-expansions x = [agf, a10,a260,a30,...] forn >0 with 0 < 6 < 1
1: Set a, to be the integral part of z,,, such that a,, = |2, | withn >0€ Z
2: repeat
3: Compute x,, — a,
4 if z,, — a,, # 0 then
5 Set xp41 =
6 else
7: Terminate the algorithm
8
9

and go back to Step 1 to compute a1

1
Tn—Aan

: until z,, —a,, = 0.
cforn>0withO0< <1
10: Multiply each value of ay, apt1, @nt2, Gnyis, - . .obtained with 0

The value of a,0 obtained in Algorithm 1 is computed using Maple software. Next, to obtain the
value of #-convergent, Theorem 1 and Theorem 2 are applied within the Maple software. Numerical
computations on the behaviours of #-convergent are provided as follows.

In determining the value of x and 6, they must satisfy z € (0,6) with 0 < § < 1. We let our irrational
number, z = {/18} ~ 0.242640686 with two different values of 6, which are ; = {1/21} ~ 0.582575695
and 0 ~ 0.732050808. The computation of convergents is depicted in the following table.
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Table 1. The values of convergent, C,,, on two different values of 6,
for x = {/18} = 0.242640686 with iteration n = 6.

Cp | 61 = {~/21} = 0.582575695 | 63 = 0.732050808
Co 0 0

c 0.4291287847 0.3415063507
Cs 0.3929478168 0.3226892761
Cs 0.3957611307 0.3236719552
Cy 0.3955409330 0.3236204891
Cs 0.3955581591 0.3236231842
Ce 0.3955564076 0.3236229993

Theorem 3 states that every value of even f-convergent is always less than every value of odd 6-
convergent. Based on the above sample in Table 1, x = {V/18} = 0.242640686 with 0 = {\/21} =
0.582575695, we observe the following results.

When n is odd:

o (7 =0.4291287847 > Cy = 0;
o (3 =0.3957611310 > Cy = 0.3929478171,
o (5 =0.3955581593 > C'y = 0.3955409333.

From the above inequalities, every value of odd 6-convergent is greater than every value of even 6-
convergent.
When n is even:

o (5 =0.3929478171 < C; = 0.4291287847,
o (4 =0.3955409333 < C3 = 0.3957611310;
o (s =0.3955564079 < C'5 = 0.3955581593.

From the above inequalities, every value of even 6-convergent is less than every value of odd 6-
convergent, which satisfies C; > Cy, C3 > Co, C5 > Cy, and Cy < C1, Cy < C3, Cg < C5. Thus, these
clarifications lead to the following properties of #-convergents:

Co =0 < Cy =0.3929478171 < C4 = 0.3955409333 < Cg = 0.3955564079
< C5 = 0.3955581593 < C3 = 0.3957611310 < C = 0.4291287847.

When simplifying the above inequalities, we ob-

tain the fundamental result: Table 2. The values of odd #-convergent and even

f-convergent for x = {1/18} = 0.242640686 with
Co<Cy<(Cy<Cs<C5<C3<Ch. 6 = {\/21} = 0.582575695.

In addition, the following table illustrates the n| Odd6-C, |n| Even 0-C,
other patterns of odd 6-convergent and even 6- 1 | 0.4291287847 | 2 | 0.3929478171
convergent. 31 0.3957611310 | 4 | 0.3955409333

Table 2 illustrates that, based on this sample, odd 5 1 0.3955581593 | 6 | 0.3955564079
9—cpnvergent forms a strictly decreasmg seguence, Table 3. The values of Cp and |z — C|
while the even #-convergent forms a strictly increas- for 2 — {v/I8} = 0.242640686
ing sequence. These numerical results satisfy Theo- with @ = 0.732650808.
rem 4. c ==l

Now, let us compare the value of #-convergent n L i "

S 0 0 0.242640686

to the value of the irrational number = to see how
. . . 1 | 0.3415063507 | 0.0988656647

good an approximation each one provides. At first,
. 2 | 0.3226892761 | 0.0800485901
we tabulate the following table. 5 | 0.3236719552 | 00810312692

The value of |x — C,| in Table 3 illustrates the ' '

. . . . . 4 | 0.3236204891 | 0.0809798031
quality of each approximation. Notice, for instance,
A . . 5 | 0.3236231842 | 0.0809824982
that the error, when n = 0 in the approximation
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given by Cy = 0 is within the bound of

1 1
= = 0.3415063507
gog1  1-2.928203232 ’
in which |z — Cy| = 0.242640686 always lies between —_1 = _0.3415063507 and -+ _

q0q1 an q +1
0.3415063507, satisfying Theorem 5.

4. Conclusion

Throughout this paper, we have provided an overview of convergents of #-expansions. We can re-
gard an infinite H—expansion x = [apf;a10,a20,...], as an analog of an infinite decimal expansion
of real numbers. C),, = £2 denotes the nth convergent of this #-expansion, known as f-convergent.
f-convergents are divided ‘into two types: the even f-convergents and the odd f-convergents. These
f-convergents have been computed based on the #-expansion algorithm in Maple software. Maple
software helped to produce accurate 8-convergent outputs for the irrational number x € R within the
lowest computational time.

The even #-convergents, Cpy, Cs, Cy, . .. form a strictly increasing sequence of real numbers, while the
odd 6-convergents, Cy, C3, Cs, ...form a strictly decreasing sequence of real numbers. Consequently,
every value of an even f-convergent is less than every value of an odd #-convergent, summarized as
Coy<Cy <(Cy<...< (U5 < (C3< (. These properties of 8-convergents, together with the property
in Theorem 5, allow us to determine how good the approximation for each #-convergent. The error in
the approximation is bounded by = ql — as given in Theorem 5. Furthermore, Theorem 4 has shown
in general that the 6-convergent Z n+2 provides a better approximation than q—". Each successive 6-
convergent provides a better approx1mat10n Hence, the property in Theorem 6 is also true and is
proved in general.
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ﬂosep,lHKa 36|>KHV|x OpobiB y #-po3BUHEHHSIX: 0O4YMCNOBaNbHUIA
aHai3 Ha OCHOBI a/rOpnTMy (-po3BUHEHb 3 BUKOPUCTAHHSIM
nporpamHoro 3abesnedeHHsa Maple

Myxammas K. H.', Kamapymxaiini X.2, Acoymra M. A.l, Camap C. X.3

HTewmp dyndamernmanvrux docaioscernn y eaysi nayxu Yuisepcumemy Hympa Manratiai,
Vuisepcumem Ilympa Manaiizii, 43400 UPM Cepdane, Ceaanzop, Manratizis
2 [IIkona mamemamuvnuz woyx, Yrisepcumem Catine Manatizii, 11800 USM, Henane, Manatisis
3 Kagpedpa mamemamuru ma cmamucmuxy, Daxysvomem npupoonuMus Hayx,
Yuisepcumem Iympa Manaiizii, 43400 UPM Cepdane, Ceaanzop, Manaiizin

HemnepepBHi a1p0obu npupoHO BUHUKAIOTH y JIJIEHHI B CTOBIYUK Ta TeOpil HaO/IMKEHHS
JIfiCHUX YrcesT palliOHAJBHUMHI UUCIaMUA. Y IIbOMY JIOCTIZKEHHI PO3IJISIIA€ThC peaTida-
1ist 301kHUM j1poboM -posBuHenHs aificuux ducen z € (0,0) 30 < 6 < 1. 36ixkui agpodu 6-
PO3BUHEHHST TAKOXK HA3UBAIOTHCS O-301:KHIME IpobaMU PO3BUHEHHST HEIIEPEPBHUX APOOIB.
Metoto bOro JOCTIIXKEHHS € BCTAHOBJIEHHSI BJIACTUBOCTEH M1y1s ciM’T 0-301KHIX 1pobiB y 0-
PO3BUHEHHSIX. [/iest BUSIBJIEHHSI IOBEIHKY 0-3012KHOTO Jpo0Y BUHUKJIA 3 KOHIIEIIT PO3IIIH-
penHst peryisipaoro Henepepsraoro npoby (RCF) i mocainosrocreil, siki € B f-po3BUHEHHSIX.
Ausroput™ f-po3BHUHEHHST BUKOPUCTOBYBABCS JIJIsi O0UHCICHHsT 3HAYEHDb #-301KHIX 1pobiB
3a J0MOMOrow0 mporpamuoro 3abesnedennss Maple. e BusiBuiocs epekTuBHUM METOIOM
JJI MIBUIKOI KOMIT'oTepHol peasizamnii. [IIBuakicte 3pocramus §-36ixkuH0r0 ;1pody Oyiia
JIoCJTiIzKeHa, o0 miakpecanTn eeKTUBHICTL 0-36ixkH01 1pody. Anaiz 6-36ikH0r0 IpOdY
BUSBUB 30i2KHI Apo0H, SKi JAI0Th Kpalle HaOJIMKEeHHs, B IKUX BUHUKAIOTH MEHII TOX10-
K1 30i2KHOCTI. ¥ CcTaTTi peTe/bHO BU3HAYEHO MOBEIIHKY #-301KHOTO Jpo0y, sika BUSHAYAE,
HACKIIbKHU JT00pEe 9UC/I0 & alPOKCUMYEThCS CBOIMU 30IKHUME JApobaMu Iy MaiiKe BCiX
ippallioHATbHIX IHCEJT.

Kntouosi cnoea: 6-36isicruti dpib; 0-possunenna; 0-anrzopumm possunenis; nenepepe-
HUtl Opib; nomusky 30iHCHOCMI.
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