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Continued fractions arise naturally in long division and the theory of the approximation
to real numbers by rational numbers. This research considered the implementation on the
convergent of θ-expansions of real numbers of x ∈ (0, θ) with 0 < θ < 1. The convergent of
θ-expansions are also called as θ-convergent of continued fraction expansions. This study
aimed to establish the properties for a family of θ-convergent in θ-expansions. The idea of
discovering the behaviours of θ-convergent evolved from the concept of regular continued
fraction (RCF) expansion and sequences involved in θ-expansions. The θ-expansions al-
gorithm was used to compute the values of θ-convergent with the help of Maple software.
Consequently, it proved to be an efficient method for fast computer implementation. The
growth rate of θ-convergent was investigated to highlight the performance of θ-convergent.
The analysis on θ-convergent revealed the convergent that gives a better approximation
yielding to fewer convergence errors. This whole paper thoroughly derived the behaviours
of θ-convergent, which measure how well a number x is approximated by its convergents
for almost all irrational numbers.
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1. Introduction

In many years, continued fractions had evolved along with the curiosity in solving many problems
including expanded irrational square roots, computed continued fraction of differential equations by
Lagrange’s method [1], computed continued fraction of π [2], convergence theory [3] and others. Thus,
variants of continued fractions were created in the quest to explore and to establish more results related
to continued fractions.

A continued fraction 〈〈{an}, {bn}〉, {xn}〉 is often denoted by the expression as follows:

xn = b0 +
a1

b1 +
a2

. . .+ an

bn

.

The numbers an and bn are called the nth partial numerator and denominator of the continued fraction,
respectively. Sometimes, they are simply called the elements; xn is called the nth approximant. If
{an} and {bn} are infinite sequences, then 〈〈{an}, {bn}〉, {xn}〉 is called an infinite (or non-terminating)
continued fraction. It is called a finite (or terminating) continued fraction if {an} and {bn} have only
a finite number of terms a1, a2, . . . , am and b0, b1, . . . , bm.

The origin of continued fractions is traditionally placed at the time of the creation of Euclid’s
algorithm [4]. The Euclidean algorithm involves the division of the larger integer by the smaller, the
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smaller by the remainder, the first remainder by the second remainder, and so on until the exact
division is obtained whence the greatest common divisor (GCD) is the exact divisor.

An Indian Mathematician, Aryabhata, used a continued fraction to solve a linear indeterminate
equation [4], which refers to the equation that cannot be directly solved from the given information.
For instance,

ax+ by = c, x2 − Py2 = 1.

Rather than generalizing this method, the author used the continued fractions in specific examples.
Continued fraction became a field in its right through the work of John Wallis [5]. The theory concern-
ing continued fractions was significantly developed, especially that concerning the convergents. The
convergent of a continued fraction is presented as follows [6].

Definition 1. The continued fraction made from [a0, a1, a2, . . . , an] by cutting off the expansion after
the kth partial denominator ak is called the kth convergent of the given continued fraction and denoted
by Ck; in symbols,

Ck = [a0, a1, . . . , ak], 0 6 k 6 n.

Let the zeroth convergent C0 be equal to the number a0.

Wallis [7] established many of the basic properties of convergents in his book entitled Arithmetica

Infinitorum. Next, Bosma and Kraaikamp [6] derived the distribution of the sequence θn(x)n>1, which
measures how well a number x is approximated by its convergents for almost all irrational numbers.
Subsequently, Elsner and Komatsu [8] studied the leaping convergents p3n+1

q3n+1
for the continued fraction

of e = ⌊2; (1, 2k, 1)⌋∞k=1
and leaping convergents p3n

q3n
for the continued fraction of e

1

s = ⌊1; (s(2k −
1)− 1, 1, 1)⌋∞k=1

where s > 2. They obtained some arithmetic properties and extended such results for
further general continued fractions. As one of the applications, they showed a new recurrence formula
for leaping convergents of Apery’s continued fraction of ζ(3).

Since the beginning of the 20th century, continued fractions have made their appearances in other
fields. For instance, much research has examined the connection between continued fractions and other
fields relative to the chaos theory. Besides that, continued fractions are being utilized within computer
algorithms for computing rational approximations to real numbers as well as solving indeterminate
equations. Numerous studies, including solving Pell’s equation using continued fractions [9], apply-
ing continued fractions in the field of cryptography [10, 11], and continued fraction expansions that
contribute to the Gauss map [12], invariant measure [13], Lebesgue measure [13], and ergodicity in
dynamical systems [14], show the development of this subject.

In previous works, many researchers explored the development of various types of continued frac-
tions such as regular continued fraction (RCF) [15], generalized continued fraction (GCF) [16], nearest
integer continued fraction (NICF) [17], semi-regular continued fraction (SRCF) [18], optimal continued
fraction (OCF) [6], Engel continued fraction (ECF) [13], and θ-expansions [19]. θ-expansions have con-
tributed to solving many problems, especially in the ergodic system [20–24]. The idea of θ-expansions
has been motivated and implemented by RCF expansions which contributed to many applications.
One of the most important uses is called the Gauss–Kuzmin theorem in the metrical theory of θ-
expansions. Previous research has solved a Gauss–Kuzmin problem for θ-expansions [21, 22]. They
applied the theory of random systems with complete connections extensively studied by Iosifescu and
Grigorescu [25] and the method of Rockett and Szusz [26] to solve the Gauss–Kuzmin problem.

Recently, the view of θ-expansions has been expanded through the studies made by Muhammad
and Kamarulhaili [27]. Based on the samples in that research, it was clearly shown that 0 < θ < 1
affects the behavior of θ-expansions and tends to make it different from the RCF expansions. From
that paper, they have listed the similarities and differences for both θ and RCF expansions. Hence,
in this paper, our concern is to critically examine the behaviors of convergents in θ-expansions and
observe the performance of 0 < θ < 1 towards the growth rate of convergents.
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2. Mathematical preliminaries

Chakraborty and Rao [19] solved the problems in random continued fraction expansions related to
θ-expansions. The problem includes the symbolic dynamics of the map Tθ : [0, θ] → [0, θ] and the
existence of absolutely continuous invariant probability. The value of θ is fixed within 0 < θ < 1 and
x ∈ (0, θ), where x is referred to the irrational number, x ∈ Qc ∈ R. The θ-expansion is defined as
follows [27].

Definition 2. For any x ∈ (0, θ) and 0 < θ < 1, let x be the θ-continued fraction expansion of x,
and its expansion is as follows:

x = a0θ +
1

a1θ +
1

a2θ +
1

a3θ +
1

. . .+
1

anθ +
1

Rn

, (1)

where Rn = [an+1θ, an+2θ, an+3θ, . . .] and an’s are non-negative integers. The expansion in equation (1)
is also called the θ-expansion of x with a0θ = 0 and an ∈ R where an > 0. Such an’s are called the
θ-continued fraction digits of x with respect to this expansion.

Equation (1) can be written as x = [a0θ, a1θ, a2θ, a3θ, . . . , anθ+
1

Rn
]. If x ∈ Q, then the θ-expansion

is finite as x has a finite θ-expansion. Meanwhile, if x ∈ Qc, then the θ-expansion is infinite as x has
an infinite θ-expansion. This statement means those real numbers expressible as finite θ-expansion
are precisely the rational numbers, while those real numbers expressible as infinite θ-expansion are
precisely the irrational numbers. So, all real numbers have representations as θ-expansion, where the
rational numbers are characterized by having finite representations and the irrational numbers are
characterized by having infinite representations. Hence, the expansion in equation (1) is an infinite
θ-expansion or non-terminating expansion. While, the finite θ-expansion will terminate at the nth step
and the expansion is as follows:

x = a0θ +
1

a1θ +
1

a2θ +
1

. . .+
1

anθ

. (2)

Then, equation (2) can be written as x = [a0θ, a1θ, a2θ, . . . , anθ]. Next, the convergent of θ-expansions
is defined as follows [19].

Definition 3. For any x ∈ (0, θ) and 0 < θ < 1,

Cn = [a0θ, a1θ, a2θ, a3θ, . . . , anθ]

is defined as the n-th order of θ-convergent of continued fraction expansions.

Much of the labor in calculating the θ-convergents can be avoided by establishing formulas for their
numerators and denominators. Hence, this leads to the following recurrence relations [27].

Theorem 1. Let x = [a1θ, a2θ, a3θ, . . . , anθ + 1

Rn
], where Rn = [an+1θ, an+2θ, an+3θ, . . .] be an

infinite θ-expansion of continued fraction. Then, we have recurrence relations for n ∈ N:

p0 = a0θ, p1 = a0θa1θ + 1, pn = anθpn−1 + pn−2;

q0 = 1, q1 = a1θ, qn = anθqn−1 + qn−2. (3)
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Theorem 2. Let x = [a1θ, a2θ, a3θ, . . . , anθ +
1

Rn
], where Rn = [an+1θ, an+2θ, an+3θ, . . .] be an infi-

nite θ-expansion of continued fraction. Define p0, p1, p2, . . . , pn and q0, q1, q2, . . . , qn by the recurrence
relations of equation (3). Then, we have the n-th order of θ-convergent of continued fraction expansions
based on those recurrence relations as

Cn =
pn

qn
. (4)

From the equations (1), (3), and (4), θ-expansion now has n terms, which is

xn =
pn + 1

Rn
pn−1

qn + 1

Rn
qn−1

, (5)

with Rn = [an+1θ, an+2θ, an+3θ, . . .] = xn+1. Based on the recurrence relations in equation (3), we
have the following property [27].

Lemma 1. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ +
1

Rn

]

be an infinite θ-expansion of a continued frac-
tion, where Rn = xn+1 with pn = anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Then,

pnqn−1 − pn−1qn = (−1)n−1 for n > 0. (6)

Next, from Theorem 1, we obtain the following consequences as indicated in the following corollaries.

Corollary 1. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

be an infinite θ-expansion of a continued
fraction, where Rn = xn+1. Cn = [a0θ, a1θ, a2θ, . . . , anθ] = pn

qn
is defined as θ-convergent, where

pn = anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Hence, we have

Cn − Cn−1 =
(−1)n−1

qnqn−1

, n > 1. (7)

Corollary 2. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

be an infinite θ-expansion of a continued
fraction, where Rn = xn+1. Cn = [a0θ, a1θ, a2θ, . . . , anθ] = pn

qn
is defined as θ-convergent, where

pn = anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Hence, we have

Cn − Cn−2 =
(−1)nanθ

qnqn−2

, n > 2. (8)

Corollary 1 and Corollary 2 are important in the extension of the finite θ-expansions to the infinite
θ-expansions, which are obtained by expanding the θ-convergent Cn = pn

qn
.

3. Results and discussions

In this section, we will discuss the behaviours and examine the patterns of θ-convergent with their
numerical computations.

3.1. Theoretical behaviours of θ-convergent

Corollary 1 and Corollary 2 give us important information that the θ-convergent, Cn changes as n

increases. θ-convergent can be defined as the even θ-convergent or the odd θ-convergent. The n-th
order of θ-convergent will verify whether the θ-convergent is even or odd. Even θ-convergent occurred
when the value of n of n-th order is an even number such as C2, C4, C6, C8, . . . . While, odd θ-convergent
occurred when the value of n of n-th order is an odd number such as C1, C3, C5, C7, . . . . The previous
two corollaries lead to the following theorems, regarding the properties of the even θ-convergent and
the odd θ-convergent.

Theorem 3. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

be an infinite θ-expansion of a continued
fraction where Rn = xn+1. Cn = [a0θ, a1θ, a2θ, . . . , anθ] =

pn
qn

is defined as θ-convergent where pn =
anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Subsequently, every value of even θ-convergent is less than
every value of odd θ-convergent.
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Proof. By Corollary 1, we have

Cn − Cn−1 =
pn

qn
− pn−1

qn−1

=
pnqn−1 − pn−1qn

qnqn−1

. (9)

Then, we substitute equation (6) into equation (9), we obtain

Cn − Cn−1 =
(−1)n−1

qnqn−1

, n > 1.

For the even case, if we set n = 2, then we obtain

C2 − C1 =
(−1)1

q2q1
< 0, (10)

which satisfies qn is always positive. Then, from equation (10), we obtain

C2 < C1. (11)

Now, we set n as even with n > 2 using the same formula as in equation (7), and we observe

C4 < C3, C6 < C5, C8 < C7, C10 < C9, . . . . (12)

Next, for the odd case, using n = 3 and substituting into equation (7), we obtain

C3 − C2 =
(−1)2

q3q2
> 0, (13)

which satisfies qn is always positive. From equation (13), we have

C3 > C2. (14)

Then, we set n as odd with n > 3, by Corollary 1, we will obtain the following inequalities:

C5 > C4, C7 > C6, C9 > C8, C11 > C10, . . . . (15)

Based on equations (11), (12), (14), (15), we found that every value of even θ-convergent is always less
than every value of odd θ-convergent as desired. �

Theorem 4. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

be an infinite θ-expansion of a continued
fraction where Rn = xn+1. Cn = [a0θ, a1θ, a2θ, . . . , anθ] =

pn
qn

is defined as θ-convergent where pn =
anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Hence, we have
1. The even θ-convergent, C0, C2, C4, . . . forms a strictly increasing sequence of real numbers, such

that

C0 < C2 < C4 < . . . . (16)

2. The odd θ-convergent, C1, C3, C5, . . . forms a strictly decreasing sequence of real numbers, such
that

C1 > C3 > C5 > . . . . (17)

Proof. By Corollary 2, we have

Cn − Cn−2 =
pn

qn
− pn−2

qn−2

.

By simplifying the above equation, we have

Cn − Cn−2 =
anθ(pn−1qn−2 − pn−2qn−1)

qnqn−2

. (18)

Next, when substituting equation (6) into equation (18), we obtain

Cn −Cn−2 =
anθ(−1)n−2

qnqn−2

=
(−1)nanθ

qnqn−2

, n > 2.

For the even case, if we set n = 2, we will have

C2 −C0 =
(−1)2a2θ

q2q0
> 0, (19)

where qn is always positive. From equation (19), we will obtain

C2 > C0. (20)
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We set n as even with n > 2 step-by-step following the above fashion, we obtain the following inequal-
ities:

C0 < C2 < C4 < . . . . (21)

From equation (21), we can see that the even θ-convergent forms a strictly increasing sequence of real
numbers as desired. Next, for the odd case, if we set n = 3, we will have

C3 −C1 =
(−1)3a3θ

q3q1
< 0, (22)

where qn is always positive. From equation (22), we obtain

C3 < C1. (23)

Then, we set n as odd with n > 3 using the same step as in equation (22) and we obtain the following
inequalities:

. . . < C5 < C3 < C1. (24)

From equation (24), we found that the odd θ-convergent forms a strictly decreasing sequence of real
numbers as desired. �

We can regard an infinite θ-expansion, x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

as an analog of an
infinite decimal expansion of a real number. Truncating an infinite decimal expansion of an irrational
number produces a rational approximation of the number. The following property of θ-convergent
allows us to determine how good the approximation of it on xn.

Theorem 5. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ +
1

Rn

]

be an infinite θ-expansion where Rn = xn+1

with x ∈ (0, θ) and fixed θ within the range of 0 < θ < 1. We set xn =
pn+

1

Rn
pn−1

qn+
1

Rn
qn−1

with the relations

of pn and qn as pn = anθpn−1 + pn−2 and qn = anθqn−1 + qn−2. Hence, we have
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

±1

qnqn+1

∣

∣

∣

∣

. (25)

Proof. From equation (1), we have x = [a0θ, a1θ, a2θ, a3θ, . . . , anθ +
1

Rn
] where Rn = xn+1:

x = a0θ +
1

a1θ +
1

a2θ+···+ 1

anθ+ 1
Rn

.

Considering this θ-expansion having n terms, we note that x = xn. Then, applying the formula for the
n-th θ-convergent. We are interested in the size of the difference between xn and pn

qn
, that is xn − pn

qn
,

so from equation (5), we can write

xn − pn

qn
=

Rnpn + pn−1

Rnqn + qn−1

− pn

qn
.

By simplifying the above equation, we have

xn − pn

qn
=

pn−1qn − pnqn−1

qn(Rnqn + qn−1)
.

From Lemma 1, we have pn−1qn−pnqn−1 = (−1)n, which means that pn−1qn−pnqn−1 = ±1. Therefore,
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

±1

qn(Rnqn + qn−1)

∣

∣

∣

∣

.

Now, since Rn > anθ because anθ ∈ R and Rn ∈ R is the same real number plus the rest of the θ-
expansions. Now, note that since decreasing the size of the denominator results in making the fraction
larger, then we have

∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

1

qn(an+1θqn + qn−1)

∣

∣

∣

∣

.

Since we have an+1θqn + qn−1 = qn+1, so now we have
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

±1

qnqn+1

∣

∣

∣

∣

as desired. �
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From Theorem 5, we have the following property:

Corollary 3. If pn
qn

is the nth θ-convergent to the irrational number x, then
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<
1

qnqn+1

<
1

q2n
. (26)

Proof. From Theorem 5, we have proved that
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<
1

qnqn+1

.

Then, now we need to compare between qnqn+1 and q2n where we have the following equations:

qnqn+1 = qn(qn+1),

q2n = qn(qn).

From the behavior of qn, we have qn > qn−1, which gives us qn+1 > qn and the following inequality:

qnqn+1 > q2n. (27)

So, from equation (27), we obtain

1

q2n
>

1

qnqn+1

. (28)

Then, from equation (5), we obtain xn − pn
qn

as follows:
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

Rnpn + pn−1

Rnqn + qn−1

− pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

pn−1qn − pnqn−1

qn(Rnqn + qn−1)

∣

∣

∣

∣

.

From Lemma 1, we have pn−1qn − pnqn−1 = (−1)n. Therefore, we have
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

1

qn(Rnqn + qn−1)

∣

∣

∣

∣

. (29)

Now, we have the denominator of equation (28) and equation (29) as follows:

q2n = qn(qn),

qn(Rnqn + qn−1) = qn(Rnqn + qn−1),

where Rnqn + qn−1 > qn, which then gives us the following inequality:

qn(Rnqn + qn−1) > q2n. (30)

So, from equation (30), we obtain

1

q2n
>

∣

∣

∣

∣

1

qn(Rnqn + qn−1)

∣

∣

∣

∣

,

1

q2n
>

∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

. (31)

Thus, from equation (28) and equation (31), we obtain that
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<
1

qnqn+1

<
1

q2n

as desired. �

In Theorem 4, we showed in general that the convergent pn+2

qn+2
provides a better approximation than

pn
qn

. Thus, each successive convergent provides a better approximation. Hence, the next property of
θ-convergent is also true in general, and the proof is shown in the next theorem.

Theorem 6. Let x =
[

a0θ, a1θ, a2θ, a3θ, . . . , anθ + 1

Rn

]

be an irrational number with θ-convergent
pn
qn

, where Rn = xn+1, pn = anθpn−1+pn−2, and qn = anθqn−1+qn−2. For every n > 0, the convergents
are successively closer to xn in the sense that

∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

xn − pn−1

qn−1

∣

∣

∣

∣

. (32)
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Proof. From equation (5), we have

xn =
Rnpn + pn−1

Rnqnqn−1

.

So, if we subtract xn from pn
qn

and pn−1

qn−1
, we obtain the following:

∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

Rnpn + pn−1

Rnqn + qn−1

− pn

qn

∣

∣

∣

∣

=

∣

∣

∣

∣

1

qn(Rnqn + qn−1)

∣

∣

∣

∣

. (33)

∣

∣

∣

∣

xn − pn−1

qn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

Rnpn + pn−1

Rnqn + qn−1

− pn−1

qn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

1

qn−1(Rnqn + qn−1)

∣

∣

∣

∣

. (34)

Then, we compare the denominators of equations (33) and (34), we have

qn(Rnqn + qn−1) > qn−1(Rnqn + qn−1) (35)

since from the behaviour of qn, we have qn > qn−1. So, from equation (35), we obtain
∣

∣

∣

∣

1

qn−1(Rnqn + qn−1)

∣

∣

∣

∣

>

∣

∣

∣

∣

1

qn(Rnqn + qn−1)

∣

∣

∣

∣

. (36)

Next, by substituting equations (33) and (34) into equation (36), we obtain
∣

∣

∣

∣

xn − pn−1

qn−1

∣

∣

∣

∣

>

∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

. (37)

Finally, rearranging equation (37), we obtain
∣

∣

∣

∣

xn − pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

xn − pn−1

qn−1

∣

∣

∣

∣

as desired. �

Next subsection, we discuss the numerical computations to support the theoretical statements on
the behaviours and patterns of θ-convergents.

3.2. Numerical results on θ-convergent

This research focuses on the infinite expansions that involve the computation of irrational numbers,
x. To compute the value of θ-convergent, θ-Expansions Algorithm is applied where the algorithm is as
follows.

Algorithm 1 θ-Expansions Algorithm.

Require: x be a real number, x = x0

Ensure: θ-expansions x = [a0θ, a1θ, a2θ, a3θ, . . .] for n > 0 with 0 < θ < 1
1: Set an to be the integral part of xn, such that an = ⌊xn⌋ with n > 0 ∈ Z

2: repeat

3: Compute xn − an
4: if xn − an 6= 0 then

5: Set xn+1 = 1

xn−an

and go back to Step 1 to compute an+1

6: else

7: Terminate the algorithm
8: until xn − an = 0.
9: for n > 0 with 0 < θ < 1

10: Multiply each value of an, an+1, an+2, an+3, . . . obtained with θ

The value of anθ obtained in Algorithm 1 is computed using Maple software. Next, to obtain the
value of θ-convergent, Theorem 1 and Theorem 2 are applied within the Maple software. Numerical
computations on the behaviours of θ-convergent are provided as follows.

In determining the value of x and θ, they must satisfy x ∈ (0, θ) with 0 < θ < 1. We let our irrational
number, x = {

√
18} ≈ 0.242640686 with two different values of θ, which are θ1 = {

√
21} ≈ 0.582575695

and θ2 ≈ 0.732050808. The computation of convergents is depicted in the following table.
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Table 1. The values of convergent, Cn, on two different values of θn
for x = {

√
18} = 0.242640686 with iteration n = 6.

Cn θ1 = {
√
21} = 0.582575695 θ2 = 0.732050808

C0 0 0
C1 0.4291287847 0.3415063507
C2 0.3929478168 0.3226892761
C3 0.3957611307 0.3236719552
C4 0.3955409330 0.3236204891
C5 0.3955581591 0.3236231842
C6 0.3955564076 0.3236229993

Theorem 3 states that every value of even θ-convergent is always less than every value of odd θ-
convergent. Based on the above sample in Table 1, x = {

√
18} = 0.242640686 with θ = {

√
21} =

0.582575695, we observe the following results.
When n is odd:

• C1 = 0.4291287847 > C0 = 0;
• C3 = 0.3957611310 > C2 = 0.3929478171;
• C5 = 0.3955581593 > C4 = 0.3955409333.

From the above inequalities, every value of odd θ-convergent is greater than every value of even θ-
convergent.

When n is even:

• C2 = 0.3929478171 < C1 = 0.4291287847;
• C4 = 0.3955409333 < C3 = 0.3957611310;
• C6 = 0.3955564079 < C5 = 0.3955581593.

From the above inequalities, every value of even θ-convergent is less than every value of odd θ-
convergent, which satisfies C1 > C0, C3 > C2, C5 > C4, and C2 < C1, C4 < C3, C6 < C5. Thus, these
clarifications lead to the following properties of θ-convergents:

C0 = 0 < C2 = 0.3929478171 < C4 = 0.3955409333 < C6 = 0.3955564079

< C5 = 0.3955581593 < C3 = 0.3957611310 < C1 = 0.4291287847.

Table 2. The values of odd θ-convergent and even
θ-convergent for x = {

√
18} = 0.242640686 with

θ = {
√
21} = 0.582575695.

n Odd θ-Cn n Even θ-Cn

1 0.4291287847 2 0.3929478171
3 0.3957611310 4 0.3955409333
5 0.3955581593 6 0.3955564079

Table 3. The values of Cn and |x− Cn|
for x = {

√
18} = 0.242640686

with θ = 0.732050808.

n Cn |x− Cn|
0 0 0.242640686
1 0.3415063507 0.0988656647
2 0.3226892761 0.0800485901
3 0.3236719552 0.0810312692
4 0.3236204891 0.0809798031
5 0.3236231842 0.0809824982

When simplifying the above inequalities, we ob-
tain the fundamental result:

C0 < C2 < C4 < C6 < C5 < C3 < C1.

In addition, the following table illustrates the
other patterns of odd θ-convergent and even θ-
convergent.

Table 2 illustrates that, based on this sample, odd
θ-convergent forms a strictly decreasing sequence,
while the even θ-convergent forms a strictly increas-
ing sequence. These numerical results satisfy Theo-
rem 4.

Now, let us compare the value of θ-convergent
to the value of the irrational number x to see how
good an approximation each one provides. At first,
we tabulate the following table.

The value of |x − Cn| in Table 3 illustrates the
quality of each approximation. Notice, for instance,
that the error, when n = 0 in the approximation
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given by C0 = 0 is within the bound of

1

q0q1
=

1

1 · 2.928203232 = 0.3415063507,

in which |x − C0| = 0.242640686 always lies between − 1

q0q1
= −0.3415063507 and + 1

qnqn+1
=

0.3415063507, satisfying Theorem 5.

4. Conclusion

Throughout this paper, we have provided an overview of convergents of θ-expansions. We can re-
gard an infinite θ-expansion, x = [a0θ; a1θ, a2θ, . . .], as an analog of an infinite decimal expansion
of real numbers. Cn = pn

qn
denotes the nth convergent of this θ-expansion, known as θ-convergent.

θ-convergents are divided into two types: the even θ-convergents and the odd θ-convergents. These
θ-convergents have been computed based on the θ-expansion algorithm in Maple software. Maple
software helped to produce accurate θ-convergent outputs for the irrational number x ∈ R within the
lowest computational time.

The even θ-convergents, C0, C2, C4, . . . form a strictly increasing sequence of real numbers, while the
odd θ-convergents, C1, C3, C5, . . . form a strictly decreasing sequence of real numbers. Consequently,
every value of an even θ-convergent is less than every value of an odd θ-convergent, summarized as
C0 < C2 < C4 < . . . < C5 < C3 < C1. These properties of θ-convergents, together with the property
in Theorem 5, allow us to determine how good the approximation for each θ-convergent. The error in
the approximation is bounded by 1

qnqn+1
as given in Theorem 5. Furthermore, Theorem 4 has shown

in general that the θ-convergent pn+2

qn+2
provides a better approximation than pn

qn
. Each successive θ-

convergent provides a better approximation. Hence, the property in Theorem 6 is also true and is
proved in general.
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Поведiнка збiжних дробiв у θ-розвиненнях: обчислювальний
аналiз на основi алгоритму θ-розвинень з використанням

програмного забезпечення Maple
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3Кафедра математики та статистики, Факультет природничих наук,
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Неперервнi дроби природно виникають у дiленнi в стовпчик та теорiї наближення
дiйсних чисел рацiональними числами. У цьому дослiдженнi розглядається реалiза-
цiя збiжним дробом θ-розвинення дiйсних чисел x ∈ (0, θ) з 0 < θ < 1. Збiжнi дроби θ-
розвинення також називаються θ-збiжними дробами розвинення неперервних дробiв.
Метою цього дослiдження є встановлення властивостей для сiм’ї θ-збiжних дробiв у θ-
розвиненнях. Iдея виявлення поведiнки θ-збiжного дробу виникла з концепцiї розши-
рення регулярного неперервного дробу (RCF) i послiдовностей, якi є в θ-розвиненнях.
Алгоритм θ-розвинення використовувався для обчислення значень θ-збiжних дробiв
за допомогою програмного забезпечення Maple. Це виявилося ефективним методом
для швидкої комп’ютерної реалiзацiї. Швидкiсть зростання θ-збiжного дробу була
дослiджена, щоб пiдкреслити ефективнiсть θ-збiжної дробу. Аналiз θ-збiжного дробу
виявив збiжнi дроби, якi дають краще наближення, в яких виникають меншi похиб-
ки збiжностi. У статтi ретельно визначено поведiнку θ-збiжного дробу, яка визначає,
наскiльки добре число x апроксимується своїми збiжними дробами для майже всiх
iррацiональних чисел.

Ключовi слова: θ-збiжний дрiб; θ-розвинення; θ-алгоритм розвинення; неперерв-

ний дрiб; помилки збiжностi.
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