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The increasing worldwide demand for agricultural goods, particularly tomatoes, under-
scores the need for effective pest control. Key pests such as Whiteflies, Fruit Fly, and
Helicoverpa Armigera pose significant threats to tomato crops. This research proposes a
novel approach by integrating modern technologies such as deep learning and the Internet
of Things (IoT) to revolutionize traditional pest management methods. Using a portable
Pest Counting Device equipped with the YOLOvVS8 deep learning model on a Raspberry Pi
4B, coupled with the Firebase IoT platform, facilitates instant surveillance of pheromone
traps. This integration enables farmers to make informed decisions and optimize pest con-
trol efforts. By leveraging the synergy of advanced technologies, farmers can potentially
increase crop yields while reshaping conventional pest management techniques. This holis-
tic approach not only gives farmers more control but also diminishes the environmental
repercussions linked with conventional pest control methods, highlighting how technology
can advance sustainability in agriculture amid persistent pest issues.

Keywords: precision agriculture; tomato pests; IoT (Internet of Things); deep learning;
pest management; pest detection.
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1. Introduction

Tomatoes (Solanum lycopersicum) play a pivotal role as a primary horticultural crop cultivated across
temperate regions worldwide, with a production exceeding 170 million tons (Mt) globally [1]. Morocco
has emerged as a significant player among the nations renowned for tomato production and export. In
2022, there was a notable 7% increase in Moroccan tomato exports, totaling 670000 tons compared
to the previous year’s shipment of 629510 tons [2]. This significant expansion, as documented by the
specialized journal East Fruit, resulted in Morocco ascending two ranks in a mere span of one year,
achieving the prestigious status of being the world’s third-largest exporter of tomatoes [3|. Surpassing
Iran and Spain, which occupy the fourth and fifth positions respectively, Morocco stands behind
Mexico and the Netherlands. The Souss-Massa region serves as a crucial contributor to this burgeoning
productivity, accounting for nearly 90% of the nation’s tomato production. The increasing worldwide
demand for tomatoes has opened up fresh avenues for both the agricultural and marketing industries.
However, the expansion of agricultural production on a global scale has significant implications for
the distribution of agricultural pests worldwide [4]. The transformation of the international trade
network has sparked a noticeable increase in the introduction of pest species into previously unaffected
regions. This phenomenon has led to diminished productivity in vegetable crops and has raised concerns
regarding the shelf-life of harvested products [5].

The tomato stands out among agricultural products for its unique status as a vegetable com-
monly consumed as a fruit, offering significantly higher nutritional value compared to other fruits [6].
With its prolific yield and expanding cultivation areas, especially in greenhouses where acreage rapidly
increases [7], tomatoes are highly susceptible to diseases and pests throughout their growth cycle,
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significantly impacting yield and quality and leading to substantial economic losses for farmers [§].
Notable among these pests are Whiteflies, Fruit Fly, and Helicoverpa Armigera, as depicted in Fig-
ure 1. Beyond the threat of widespread infestation and rapid crop destruction, these pests also pose
a risk of transmitting viruses, such as the yellow leaf curl virus of tomato (TYLCV), illustrated in
Figure 2. TYLCV, a devastating plant pathogen affecting tomato plants, induces yellowing and wrin-
kling of leaves. Belonging to the Geminiviridae family, TYLCV is primarily disseminated by whiteflies,
which transmit the virus while feeding on infected plants [9]. The virus impairs the plant’s photosyn-
thetic capacity and overall development, leading to diminished yield and quality. TYLCV represents
a significant menace to tomato crops worldwide, necessitating stringent pest management measures.

Helicoverpa Armigera ~ Fruit FI Whiteflies

Fig. 2. Symptoms of Yellow Leaf Curl Virus (TYLCV) Infection on Tomato Plants.

Illustratively, in Shandong Province, China, during a single tomato growing season, farmers ap-
ply up to five different types of agricultural chemicals. The spraying frequency can escalate to ten
instances, resulting in a total usage of around 1000 tons of chemical pesticides aimed at managing
diseases and pests [10]. Advanced technological solutions are imperative in agriculture for early pest
detection and reducing reliance on harmful pesticides. Traditionally, farmers have relied on personal
experience and knowledge to identify pest invasions, often leading to excessive pesticide use [11]. The
misuse of pesticides disrupts the ecological balance of agricultural land and exacerbates pest resistance,
along with escalating control expenses, resulting in significant adverse consequences for pesticide man-
agement [12]. However, mounting concerns regarding environmental and health impacts emphasize the
need for reduced pesticide application. A pivotal strategy for achieving this goal involves targeted pes-
ticide application. Traditional methods for pest detection, which rely on manual labor, are laborious
and susceptible to errors [13]. Fortunately, recent progress in computer vision technology tailored for
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precision agriculture has integrated the identification of insect pests and diseases into the monitoring
of crop health and growth, offering promising developments [14]. Nonetheless, accurately identifying
specific targets like pests poses challenges due to factors such as similar shapes, complex backgrounds,
object overlap, fluctuating lighting, and extensive orchard topography [15,16]. However, technological
advancements, particularly in image processing, have made insect pest detection feasible [17]. Preci-
sion agriculture has gained significant traction in response to these challenges, aiming to enhance the
precision and accuracy of pest identification [18-20]. The adoption of computer vision for acquiring
and analyzing visual data has become indispensable for achieving efficient pest detection [21].

In recent years, propelled by rapid advancements in deep learning theories and computational
capabilities, deep convolutional networks (CNNs) have achieved remarkable breakthroughs in the field
of computer vision. Particularly in object detection, deep learning-driven techniques have demonstrated
precision far exceeding that of conventional methods relying on manually engineered features such as
HOG and SIFT [22]. Object detection entails identifying various objects of significance within an image,
followed by delineating a rectangular bounding box around each item and assigning it a corresponding
category label. In the context of insect counting, which can be seen as a specific application of
object detection, CNN-based object detectors offer an ideal solution [23-25|. Consequently, numerous
researchers are actively exploring image detection methods based on convolutional neural networks
(CNNs) [26]. Among these, the YOLO (You Only Look Once) model stands out as the top choice
thanks to its ability to respond in real-time with exceptional accuracy. It is worth noting, that there
exist eight different versions of the YOLO algorithm: YOLOv1 [27], YOLOv2 [28], YOLOv3 [29],
YOLOv4 [30], YOLOv5 [31], YOLOv6 [32], YOLOvV7 [33], and YOLOvS [34].

This research introduces an innovative portable device designed to simplify the process of pest
counting within pheromone traps, eliminating the need for an onsite insect expert. Leveraging
YOLOvVS8, the most recent version of YOLO, in conjunction with the Raspberry Pi 4B embedded
system, the device offers a powerful solution. In order to facilitate remote monitoring of pheromone
traps and provide real-time insights, the system seamlessly integrates with the Firebase IoT platform.
Firebase serves as a dependable cloud-based solution that promptly captures, stores, and presents data
from pheromone traps. This proposal streamlines intervention procedures, enabling targeted insecti-
cide application solely in affected areas. As a result, the technology encourages responsible pesticide
usage, thereby reducing the adverse environmental and human health effects associated with these
chemicals. Furthermore, this advanced capability promotes increased yields by minimizing reliance on
pesticides, advocating for sustainable and environmentally friendly agricultural practices.

The rest of this paper is organized as follows: Section 2 outlines the approach employed in this
study, covering the methodology, materials such as the dataset, object detection models, Firebase IoT
platform, and the Pest Counting Device. In Section 3, the obtained experimental results are discussed.
Finally, Section 4 presents the conclusions drawn from the research.

2. Methodology

Our proposed approach comprises a series of 7 consecutive stages, as illustrated in Figure 3. Each
stage represents::

— Stage 1 (S1): Collecting insect pest images to train and evaluate the deep learning (DL) model.

— Stage 2 (S2): Processing the entire dataset by resizing images to 299x299 dimensions and ap-
plying augmentation techniques to expand the sample pool (augmenting images based on specified
parameters).

— Stage 3 (S3): Performing image annotation to generate the object detection dataset.

— Stage 4 (S4): Training the YOLOv8 object detection model using the dataset.

— Stage 5 (S5): Validating the detection performance using a subset of the dataset and assessing
the results.

— Stage 6 (S6): Selecting the most optimal model for the Pest Counting Device.

— Stage 7 (S7): Transmitting the detection results to the Firebase IoT Dashboard.
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Fig. 3. Flowchart Representation of the Research Methodology.

2.1. Dataset

For the training and validation of the model for detecting insect pests, various sources of data collection
were utilized. These include the databases curated by Jeremy Tusubira [35] and Sana Tariq [36], along
with one of the projects available on Kaggle [37]. Additionally, images were sourced from the internet
through searches across different databases and search engines including IPM Images, iStock, Google,
Bing, Lepiforum and Flickr. The dimensions of the images from one of these sources were standardized
to 299x299 pixels, and accordingly, all other images were resized to match these dimensions.

The study highlights the challenge of acquiring a substantial dataset essential for the effective
performance of deep learning models. Limited data can lead to over-fitting and reduced generalization
capabilities. To overcome this challenge, data augmentation techniques such as flipping and shifting
were employed. However, managing potential pixel loss at the edges of augmented images was crucial.
The research focused on insect pest images and applied geometric transformations, specifically rotation
at three angles (90°, 180°, 270°), resulting in three additional images per original one, as depicted in
Figure 4. This augmentation process expanded the dataset to 2109 images.

Fig. 4. Data augmentation.
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The preprocessing stage of images for training deep learning models was discussed, emphasizing the
significance of image annotation. This procedure entails extracting informative features from images
and assigning suitable labels based on selected inputs, thereby furnishing labeled data pivotal for
supervised learning tasks. In the study, the Makesense online platform [38] was employed for image
annotation, as depicted in Figure 5, streamlining the process and augmenting labeling accuracy, thus
bolstering the overall quality and effectiveness of the training dataset for the deep learning model.
Furthermore, the datasets were partitioned into training and validating sets at an 85:15 ratio, as
delineated in Table 1.
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Fig. 5. Image annotation in the Makesense platform.

Table 1. Pest Dataset.

Pest Dataset Training Data  Validation Data
Whiteflies (WH) 499 90
Fruit Fly (FF) 574 98
Helicoverpa Armigera (HA) 719 128

2.2. Object detection models

The launch of YOLOvS8 by Ultralytics introduced five variants, from nano to extra-large, tailored to
various computational needs, with our choice of YOLOv8m offering an ideal balance for our applica-
tion [34]. Each model varied in terms of network depth and feature map width, providing flexibility in
model selection based on specific requirements. To evaluate their performance, these models underwent
testing on the COCO dataset, and the results are summarized in Table 2. The table provides signifi-
cant insights into the complexity of the models, quantified through FLOPs (floating-point operations)
and Params (parameters), alongside their detection accuracy, assessed by mAPval 0.5:0.95 (mean Av-
erage Precision calculated across a spectrum of intersection-over-union thresholds ranging from 0.5 to
0.95). Furthermore, the response time of each model was assessed under two distinct environmental
conditions: GPU A100 TensorRT and CPU ONNX.

The Figure 6 presents a comprehensive depiction of the architecture of YOLOvS. This version
shares a similar backbone with YOLOv5 but introduces modifications to the CSPLayer, now known
as the C2f module. The C2f module (cross-stage partial bottleneck with two convolutions) combines
high-level features with contextual information, thereby improving detection accuracy.

2.3. Firebase loT platform

The Firebase IoT Platform stands out as a versatile and robust solution designed to seamlessly integrate
and oversee Internet of Things (IoT) devices and their associated data. With its intuitive interface,
live database capabilities, authentication features, and cloud functions, Firebase equips developers
with the tools they need to easily construct and expand IoT applications. Its comprehensive array
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Table 2. Detection results for YOLOVS series models on the COCO dataset.

. Speed Speed
Model Size — mAPval (b TONNX A100 TensorRT L rams  FLOPs

(pixels) 50-95 (ms) (ms) (M) (B)
YOLOv8n 640 37.3 80.4 0.99 32 87
YOLOvSs 640 44.9 128.4 1.20 11.2 98.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOvSL 640 52.9 375.2 2.39 437  165.2
YOLOv8x 640 53.9 479.1 3.53 68.2  257.8

Backbone

Fig. 6. YOLOvS8 Architecture.

of functionalities facilitates secure data transmission, device oversight, and efficient data processing,
thereby enhancing the dependability and effectiveness of loT endeavors. Whether applied in contexts
such as home automation or industrial monitoring, Firebase furnishes developers with the requisite
resources to streamline their projects and furnish users with exceptional experiences. In our research,
we intend to leverage this cloud technology to receive detection outputs generated by the YOLOv8
model from all pheromone traps, effectively enabling remote surveillance of these traps.

2.4. Pest counting device

The pest-counting device represents a groundbreaking tool poised to revolutionize pest management
practices for farmers. Engineered to be both portable and efficient, this device offers an innovative
solution by enabling farmers to easily detect insects within pheromone traps, eliminating the need for
an on-site insect expert. Moreover, this innovation significantly streamlines the process of inspecting
multiple traps across the field. Harnessing the capabilities of advanced algorithms, particularly the
YOLOv8 model and Embedded System Raspberry Pi 4B, the device swiftly and accurately identifies
various insect species and computes their quantities within an impressive 10-second timeframe. Subse-
quently, the device seamlessly transfers these detection results to the Firebase IoT platform, enabling
remote monitoring and facilitating prompt intervention strategies, as depicted in Figure 7. Further
details regarding the specifications of Raspberry Pi 4B are provided in Table 3.

3. Results and discussion

Among the YOLOv8 models evaluated, YOLOv8m emerges as the preferred option for pest detec-
tion on a Raspberry Pi 4B, thanks to its optimal balance between speed and accuracy. Although
YOLOv8n and YOLOvVSs yield less precise outcomes and encounter difficulties in effectively identi-
fying small pests, YOLOv8x and YOLOv8I] demonstrate superior accuracy. However, they demand
increased computational resources and memory, which presents challenges for the Raspberry Pi. As
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Fig. 7. Structural design of a device for pest counting.

Table 3. Raspberry Pi parameters.

Configuration Parameter
Raspberry Pi Raspberry Pi 4B
RAM 2 GB
CPU Broadcom BCM2711
Wi-Fi 2.4 GHz and 5.0 GHz IEEE 802.11b
Language Python 3.8
Framework Torch 1.13, Torchvision 0.14.0
Camera resolution 2592 x 1944
Operating system Raspberry Pi OS 64 bit

a result, YOLOv8m emerges as a suitable compromise, offering satisfactory accuracy while preserving
computational efficiency conducive to Raspberry Pi utilization.

3.1. Experimental setup and metrics

The labeling phase for both the training and validation datasets has been successfully completed,
marking a significant milestone in the project. Subsequently, the YOLOvV8 model was trained using
Google Colab. The training process utilized an NVIDIA Tesla T4 graphics card with 16 GB of memory,
running CUDA version 12.2 and driver version 535.104.05. During training, images were resized to
dimensions of 299 pixels. Vital data details, including class numbers and names, were stored in the
data.yaml file for both the training and validation directories. The dataset was partitioned into 85%
for training and 15% for validation purposes. YOLOv8m served as the chosen model for training and
underwent training for over 200 epochs.

The effectiveness of the YOLOv8m model is assessed through a range of metrics. These metrics in-
clude precision, recall, mean average precision (mAPval) at an intersection over a union (IoU) threshold
of 0.5, mAPval across IoU thresholds ranging from 0.5 to 0.95, detection processing time, parameter
count, floating point operations (FLOPs), and model size. These metrics collectively provide insights
into the model’s performance, accuracy, computational efficiency, and resource requirements.

Precision measures the accuracy of positive predictions by evaluating the ratio of correctly predicted
positive samples to the total samples predicted as positive. The precision formula is defined as

- TP
Precision = TP+ TP (1)

Recall, also known as sensitivity or true positive rate, measures the proportion of actual positive
samples that are correctly identified by the model. It is defined as the ratio of true positive predictions
to the total actual positive samples. The recall formula is

TP

Recall = m . (2)
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Fig. 8. Training and validation results of YOLOv8m on the tomato pests dataset.

Where TP (True Positives) Instances where the model correctly predicts positive samples; FP (False
Positives) Instances where the model incorrectly predicts positive samples; FN (False Negatives) In-
stances where the model correctly predicts positive samples; TN (True Negatives) Instances where the
model incorrectly predicts negative samples (missed detections).

The computation formulas for mAPval 0.5 and mAPval 0.5:0.95 are given below:

1
AP = /0 P(R)dR, (3)
_ YL AP,
mAp = Zi=l 2 (4)

mAPval 0.5 represents the mean Average Precision calculated based on detections with confidence
scores exceeding 0.5. This metric evaluates the precision and recall values derived from these detections.

mAPval 0.5:0.95 refers to the mean Average Precision across varying confidence thresholds between
0.5 and 0.95, with increments of 0.05. This comprehensive assessment allows for evaluating the model’s
performance at different confidence levels.

The model size indicates the saved size upon concluding the final training phase. It reflects the
amount of memory required to store the trained model, providing insight into the computational
resources needed for deployment.

The results obtained from the training and validation sets in Figure 8 reveal three types of losses:
box loss, classification loss, and deformable loss.

Box loss evaluates the model’s accuracy in precisely locating an object’s center and ensuring that
the predicted bounding box effectively encompasses the object. This metric is crucial for ensuring the
model’s ability to localize objects accurately.

Classification loss measures the algorithm’s effectiveness in predicting object classes. It assesses
how well the model can correctly classify objects into their respective categories.

The inclusion of deformable convolution layer loss in the YOLOvVS architecture is noteworthy. This
loss quantifies errors in deformable convolution layers, which are designed to improve object detection
for objects of various scales and aspect ratios. A lower dfl loss value indicates better handling of
object deformations and appearance variations, ultimately leading to improved detection performance.

Moreover, the model demonstrates significant improvements in precision, recall, and mAP (mean
Average Precision) metrics after 60 epochs, with stability achieved around 140 epochs. This suggests
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that the model reaches a point where further training does not yield significant improvements in per-
formance, indicating convergence. This observation underscores the importance of optimizing training
duration to balance model performance and computational resources effectively.

3.2. Results of pest counting device

The YOLOv8m model has demonstrated notable proficiency in identifying pests infesting tomato crops,
achieving a commendable confidence level of 94%, as illustrated in Figure 9. Furthermore, the model’s
effectiveness is enhanced by its integration with IoT functionalities via the Firebase IoT platform. This
integration enables farmers to monitor field conditions in real-time. Through the Firebase dashboard,

Number of HA: 4
Number of FF: 4
Number of WH: 6

Fig. 9. Experimental Results of Pest Counting Device.

farmers can easily view images of insects captured within traps, along with the corresponding quantities
of each pest detected. This streamlined access to data empowers farmers to make informed decisions
promptly, enhancing pest management strategies and ultimately contributing to improved crop yields
and agricultural sustainability.

Additionally, the portable Pest Counting Device enables rapid identification of areas where insect
counts in traps exceed a predefined threshold. This innovative tool streamlines intervention proce-
dures by facilitating targeted application of insecticides exclusively to affected regions. As a result,
this technology promotes the optimization of pesticide usage, leading to a reduction in the negative
environmental and human health impacts associated with these substances.

Furthermore, this sophisticated functionality plays a crucial role in attaining increased crop yields
through cultivation methods that minimize the use of pesticides, consequently fostering sustainable and
eco-conscious agricultural practices. By minimizing pesticide usage to only necessary areas, farmers
can mitigate potential harm to non-target organisms and ecosystems while maintaining effective pest
control measures. This approach aligns with the growing global emphasis on sustainable agricultural
practices, supporting long-term food security and environmental conservation efforts.
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4. Conclusions

In summary, this research represents a significant advancement in tomato pest management through
the integration of deep learning, IoT, and precision agriculture. The introduction of the Pest Counting
Device, powered by the YOLOv8 model, revolutionizes how farmers address pest-related challenges,
exemplifying the fusion of cutting-edge technology with practical agricultural needs.

This research holds significance across multiple fronts, addressing not only the pressing matter of
losses caused by pests but also promoting a more sustainable and effective agricultural methodology.
Through the provision of real-time insights and facilitating informed decision-making, the system
empowers farmers to enhance their pesticide application practices and protect crop vitality. This
ultimately results in better yield and quality while concurrently diminishing the ecological impact of
agricultural activities.

Moreover, this study adds to the progression of precision agriculture, heralding a time where data-
driven methodologies seamlessly merge with on-field operations. As technology consistently reshapes
the agricultural domain, this research highlights the transformative capacity of addressing hurdles with
inventive resolutions. By closing the divide between innovation and application, it emphasizes the vital
function that advanced technologies can fulfill in securing food supplies, promoting sustainability, and
continually advancing the agricultural industry.
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PeBontouisa y 60poTbbi 3i WIKiAHNKAMMN TOMATIB: CUHEPris rnmbokoro
HaB4aHHs, lHTepHeTy pedeii | TO4UHOro 3emsiepobcTBa

Bapby6i M.!, Besutayr A2, Yabaa C.13, Ty A.2?

LLISAD, Hauionanvna wrona npukiadnur nayk, Ynisepcumem I6m 3op, Azadip, Mapoxko
2LISTI, Hauionarvha wWroAG NPUuKieonuT nayk, Ynisepcumem I6n 3op, Azadip, Mapoxko
3 Komanda I25P, @arysvmem nayk Cemaania, Ynieepcumem Kadi Atiada, Mappaxew, Mapokko
4IMIS, Daxyarvmem npuxsadnuc nayk, Yuisepcumem I6n 3op, Azadip, Mapokko

3pocTaHHS CBITOBOTO MOIUTY HA CLIBCHKOTOCIOAAPCHKY IIPOIYKINIO, 30KPEMa Ha TOMa-
TH, IIJIKPECIoe HeoOXiIHICTh epeKTUBHOI 60poThou 3i mKijgaunkamu. OCHOBHI IIKiJIHUKHA,
Taki K OLIOKpHUJIKa, IJI0J0Ba Mylnka Ta Helicoverpa Armigera, CTaHOBJISITh 3HAYHY 3a-
rpo3y JjJs 1mociBiB TomaTiB. e gocizKeHHs TPOIIOHY€E HOBUH MiAXi/ IMIJISIXOM iHTerparfil
Cy4acHUX TEXHOJIOTIH, Takux gk rymbunne Hapdanus ta lurepuer pedeit (IoT), mo6 peso-
JIIOTIOHI3YBATH TpaJIuUIiiiHi MeToan 60poThOHu 3i MmKigHMKaMu. BukopucTaHHS OPTATHB-
HOT'O IIPUCTPOIO IS MiIPAXyHKY INKIJHUKIB, OCHAIIEHOTO MOJIEJLIIO TJINOOKOrO HABYAHHS
YOLOvS8 na Raspberry Pi 4B, y noegnanni 3 miardgopmoro Firebase IoT noJerniye mut-
TEBe criocTeperkeHHs 3a ¢gepoMmonnnmu mactkamu. Il iHTerpariisi mo3Bosisie bepmepam
npuiiMaTti OOrPYHTOBAHI PIIlIEHHS Ta ONTUMI3yBaTH 3yCHuIst 3 0OpOTHOM 31 MIKiTHUKAMI.
BukopucroByroun curepriio mepeaoBux TeXHOJIOTIH, pepMepr MOYXKYTb MOTEHIITHO ITi/1BHU-
[IUTH BPOXKAWHICTD, 3MIHIOIOYM 3BUYaitHl MeToau 60poThbu 3i mkinankamu. 1eit migicanit
MiIXig He TUTbKK Ja€ depMepaM OIbIlie KOHTPOJIIO, aje W 3MEHITye HACTIIKA JJIsT HaB-
KOJIUIITHBOTO CEePEeIOBUINA, OB’ I3aHi 31 3BUYaiiHIMHU MeTOodaMu 0OPOTHOU 31 MIKiTHUKAMH,
M IKPECTIOIOUN, IK TEXHOJIOTid MOYXKe CIPUATH CTIMKOCTI CITbCHKOTO I'OCIOIAPCTBA B YMO-
BaX MOCTIHHUX MPOOJIEM 31 MIKITHUKAMH.

Kntouosi cnosa: moune semaepobemeo; wkionuxu momamis; ToT (Inmepnem pewed);
2Aub0Ke HABYAHHA; B0POMBOA 31 WKIOHUKAMU; BUABAECHHA UKIOHUKIE.
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