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Abstract: Integrating AI agents within serverless archi-
tectures offers a modern approach to deploying and exe-
cuting intelligent applications. Leveraging the advantages 
of serverless computing, AI agents can dynamically 
respond to varying workloads without the overhead of 
managing the underlying infrastructure. This article 
explores the concept of scalable serverless AI agents in the 
cloud, detailing their architecture, benefits and drawbacks, 
challenges, and real-world applications. The paper pro-
vides advantages and drawbacks of the serverless appro-
ach. Then a proof-of-concept has been developed, deployed 
and tested. The AI agent code was deployed to Azure 
Functions, Google Cloud Functions, and AWS Lambda and 
tested. As a result, improvements to availability, resilience, 
reliability, and scalability qualities have been proposed to 
mitigate the previously defined drawbacks. 

Index Terms: cloud computing, cyber-physical systems, 
AI agents, microservices, serverless 

I. INTRODUCTION
The rapid advancements in Cyber-Physical Systems 

(CPS), Internet of Things (IoT), and robotics have 
increasingly relied on intelligent systems to enable 
autonomous and efficient operations [1]. Self-adaptive 
AI, robotic and CPS systems enhances the integration 
with the environments with higher-level process-oriented 
systems [2].  

AI approaches, machine learning and deep learning, 
LLMs, and modern AI agents play a crucial role in these 
domains, leveraging complex reasoning capabilities, 
semantic processing, and integration with physical 
environments through sensors and actuators [3]. 

Deploying these agents in the cloud offers sig-
nificant advantages, including scalability, accessibility, 
and cost-effectiveness. Among various cloud deploy-
ment models, microservices and serverless architectures 
have gained prominence due to their ability to dyna-
mically manage resources and simplify operations [4]. 
However, the unique demands of CPS, IoT, and robotics 
pose challenges to serverless systems, particularly in 
terms of availability, resilience, reliability, and scala-
bility, data security, privacy, latency for real-time appli-
cations [5]. 

Modern AI agents are commonly a software prog-
rams with the deterministic or non-deterministic flows. 
Recent advances in LLMs pushed the boundaries for 

agents into more non-deterministic operation, including 
Natural Language Processing (NLP) and generative AI 
approaches [6]. 

New agent frameworks AutoGEN, LangChain, 
LangGraph and similar help the agent software develop-
ment by automating many interactions between the 
agents, LLMs and tool calling [7]. These software agents 
can be deployed to the cloud and orchestrated. Best 
practices like modularity and independence, presented in 
microservice and serverless architecture, help to manage 
swarms of these agents. 

The Azure Functions, Google Cloud Functions, and 
AWS Lambda platforms enable the execution of event-
driven functions that automatically scale in response to 
demand, providing flexibility and cost-efficiency [8]. 
The usage of serverless architectures provides the ability 
to dynamically scale, provide reliable, high-available 
solutions and handle various workloads [9]. Additio-
nally, cloud-based AI agents benefit from reduced infra-
structure management overhead. 

This research aims to evaluate the effectiveness of 
serverless cloud architectures, using Azure Functions, 
Google Cloud Functions, and AWS Lambda, for dep-
loying AI agents. Research paper provides the literature 
review and analysis of their advantages and drawbacks 
concerning availability, resilience, reliability, and 
scalability, while addressing challenges in execution and 
deployment. AI agents powered by LLMs and supplied 
with inputs, outputs, and knowledge, are assessed in 
terms of integration into dynamic scalable environments. 
The paper proposes improvements to mitigate identified 
drawbacks, and contributes to the optimization of AI 
agents operation and deployments. 

II. LITERATURE REVIEW AND PROBLEM
STATEMENT 

This section presents a literature review, exploring 
the challenges, existing solutions, cloud architectures, 
system designs, and their advantages and limitations. 
The first research question (RQ1) is addressed in this 
section. 

The development and deployment of AI agents for 
CPS, IoT, and robotics presents unique challenges, 
particularly in the areas of availability, resilience, 
reliability, and scalability. AI agents are characterized by 
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their ability to use knowledge, interact with external 
tools and systems, and execute tasks autonomously in 
dynamic and often unpredictable environments [3]. 

AI agents in cloud environments, running within 
serverless containers to execute functions, enable advan-
ced capabilities like managing agent swarms and inter-
agent function calls, but also introduce development and 
deployment complexities [10]. 

Microservices architecture, similarly to serverless, 
recommends developing and deploying small indepen-
dent services. These best practices can be applied to code 
of AI agents, which may be optimized for a serverless 
invocation and orchestration [11]. 

Serverless computing has transformed microservice 
deployment by abstracting infrastructure management 
and enabling scalability, yet it poses challenges in state 
management, fault tolerance, and ensuring exactly-once 
execution semantics amid failures and re-executions 
[12]. 

Integrating serverless with IoT highlights Fog and 
Edge computing’s potential to enhance performance 
through decentralization, but reliance on centralized 
architectures raises issues like vendor lock-in and data 
privacy [13]. 

Traffic simulation using microservices, agents, and 
RESTful interfaces offers scalability, configurability, 
semantic interoperability, and support for diverse agent 
frameworks but faces challenges like network overhead 
and microservice management complexity [14]. 

A multi-agent framework leveraging Large Lan-
guage Models (LLMs) was proposed to enhance 
productivity and reliability in industrial task automation. 
While demonstrating collaborative potential, further 
research is needed to optimize agent interactions and 
refine operational protocols [15]. 

Enhanced resource management and task schedu-
ling was achieved by using multi-agent system approach 
[16]. Better solutions needed to improve the reliability of 
cloud applications while accommodating the inherent 
complexities of microservice architectures and MAS. 

Based on the conducted literature review, RQ1—
which asks about the advantages and drawbacks of using 
serverless cloud architectures for deploying AI agents in 
CPS and robotics—can now be addressed. 

AI agents deployed in serverless and microservice 
architectures address the dynamic demands of CPS, IoT, 
and Robotics. Serverless systems ensure availability 
through redundancy, resilience via automatic failure 
recovery, reliability through error handling and robust 
infrastructure, and scalability by adjusting resources in 
real-time under cloud-managed SLAs. However, chal-
lenges persist, including latency from edge-cloud distan-
ces, security and privacy risks from data transmission, 
state management complexities due to stateless 
functions, vendor lock-in, and integration difficulties 
with CPS infrastructure. Addressing these requires archi-
tectural strategies such as edge computing, encryption, 
and multi-cloud solutions for secure, efficient deploy-
ments. 

III. SCOPE OF WORK AND OBJECTIVES
The main objective of this research is to evaluate 

the effectiveness of serverless architecture for AI agents 
in the cloud for CPS, IoT, and robotics.  

This paper examines the cloud system architecture, 
execution and deployment of AI agents within serverless 
cloud architecture—specifically Azure Functions, 
Google Cloud Functions, and AWS Lambda—and the 
agent graph execution. The paper defines advantages and 
drawbacks of using three serverless platforms for agent 
execution environment. The scope of this work covers an 
analysis of key properties, challenges and issues inherent 
in integrating these agents into environments. The study 
reviews at least fifteen research papers, which were 
filtered, to synthesize current methodologies, identify 
best practices, and highlight gaps in existing knowledge. 
Then, based on the defined drawbacks the improvements 
are proposed to the associated execution and deployment 
in the scope of availability, resilience, reliability, and 
scalability qualities. 

The research seeks to address the following 
questions. The first research question (RQ1) asks what 
the advantages and drawbacks are of using serverless 
cloud architectures for deploying AI agents concerning 
availability, resilience, reliability, and scalability. The 
second research question (RQ2) asks how Azure Func-
tions, Google Cloud Functions, and AWS Lambda com-
pare in supporting the deployment and operational effi-
ciency of AI agents in CPS, IoT and robotics applicati-
ons. The third research question (RQ3) asks to propose 
an availability, resilience, reliability, and scalability im-
provements to mitigate the previously defined draw-
backs. 

Through addressing these objectives, the paper 
aims to contribute to the improvement of intelligent 
systems in serverless cloud environments. 

IV. SERVERLESS ARCHITECTURE FOR AI
AGENTS 

This section defines a serverless cloud system 
architecture and its components for executing AI Agents. 
The first (RQ1) and second research questions (RQ2) are 
addressed in this section. This is the reference 
architecture for the research paper, which is used for 
modelling, gathering metrics, testing, and validation. 
This architecture may be modified for other specialized 
needs according to the system requirements. 

Fig. 1 presents a high-level architecture model 
illustrating the interaction between components in a 
distributed system integrating microservices, serverless 
environments, edge processing, data storages, sensors 
and actuators, external services, message queues, 
monitoring and logging. 

Web apps are providing the user interface for the 
users. Microservices are deployed to the execution 
environments via CI/CD pipelines. Microservice scope 
contains servers, web apps and data storage for 
controlling, monitoring, operating the AI agents. AI 



Serverless AI Agents in the Cloud 

agents use a CI/CD pipeline for deployment to the cloud-
native serverless execution environment. Agents are 
connected to the data storage, messaging queues, 
external services, monitoring and logging systems. 

Fig. 1. Cloud system architecture 

Fig. 2 illustrates the architecture of an AI agent. 
The agent code, which is an agent graph or an algorithm, 
serves as the central orchestrator, connecting key compo-
nents: memory, reasoning, a Large Language Model 
(LLM), tools, sensors, actuators, and external services. 

Fig. 2. The architecture of the AI agent 

Reasoning module processes inputs to derive 
actionable insights. Memory provides persistent storage 
for contextual information, enabling stateful operations. 
Sometimes it is necessary to have an internal state cache 
to handle the execution flow. The LLM enhances natural 
language understanding and decision-making, while 
tools extend the agent’s capabilities for specialized 
computational tasks. External services provide additional 
computational resources and functionalities via APIs. 
This architecture facilitates efficient interaction between 
sensing, reasoning, and actuation in complex systems. 

Agents can also interact with edge devices. Edge 
processing capabilities allow the system to maintain 
partial functionality even during network disruptions. 
Edge devices have bidirectional connections with 
multiple subsystems, including Robots, CPS, and IoT 
devices. Sensors capture real-world inputs, which are 

processed to inform the agent’s decisions, and actuators 
execute these decisions in the physical environment. As 
a result, the system contains the cloud computing 
components connected to the physical world and vice 
versa. This may be useful for building digital twins, 
simulations, and two-way interactions. 

The proposed system leverages modular micro-
services and serverless execution environments to scale 
horizontally and vertically to varying workloads with 
fine-grained resource allocation. Computational resour-
ces are provisioned and de-provisioned in near real-time. 
This architecture allows for efficient scaling not only 
within cloud environments but also at the edge, where 
processing workloads can be distributed to edge nodes 
for local execution, reducing latency and central server 
load. 

High availability is ensured through redundancy 
mechanisms across the system’s microservices, server-
less functions, and data storage. Redundancy is provided 
by the cloud provider using regions, availability zones, 
and geography according to their SLAs. The integration 
of messaging queues and pub/sub frameworks provides 
asynchronous communication, decoupling service 
dependencies and ensuring message delivery during 
failures. Sometimes direct requests between the agents 
may fail, therefore it is valuable to use message queues. 
The system’s resilience and reliability are enhanced 
through fault-tolerant design, including fail-safe agent 
code, retry patterns, circuit breakers, and recovery for 
non-deterministic exceptions from LLM responses or 
undefined behavior. 

The architecture incorporates reliable data storage 
on the cloud provider’s end that support replication and 
synchronization across multiple nodes for data integrity 
and availability. OS and Robotic operation systems 
(ROS) are designed as is, however they use fail-safe 
mechanisms to handle disruptions in sensor or actuator 
data. The use of monitoring and logging across the 
overall system facilitates proactive fault detection and 
remediation. 

Fig 3. highlights the interaction between users, 
microservices, AI agents, and various connected sys-
tems. At the top level, Users interact with microservices, 
which serve as the intermediary layer, connecting to AI 
Agents for advanced computational capabilities. These 
AI agents form the central processing layer, acting as the 
intelligence hub within the system. 

Fig. 3. Use cases for the cloud system 
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V. PROOF-OF-CONCEPT IMPLEMENTATION
This section presents a summary of the proof-of-

concept implementation. According to the previously 
defined model a simplified version of the model was 
developed, deployed, and tested. The critical parts of the 
proposed system architecture model were implemented 
and deployed to the cloud. 

The focus was on the AI agent’s implementation. 
Each AI agent was represented as a piece of the software 
written in Python. These AI agents utilized LLMs and 
external tools to perform data analysis, decision-making, 
and control actions. AutoGEN and LangGraph were 
used. Leveraging serverless platforms, each AI agent 
was deployed as an independent function. Manual and 
automated scaling mechanisms from the cloud provider 
were tested. The same AI agents were deployed across 
three major cloud platforms: Azure Functions, Google 
Cloud Functions, and AWS Lambda. 

The deployment phase involved configuring each 
serverless platform to host the AI agents, setting up 
event triggers and connections. System’s performance 
was tested against availability, resilience, reliability, and 
scalability metrics. Automated deployment pipelines 
were established using CI/CD tools. Additionally, resi-
lience was tested by inducing controlled failures within 
the system to verify the agents’ capability to recover and 
maintain operational continuity. Reliability assessments 
focused on uptime statistics and error rates. 

The results from the PoC implementation provided 
insights, strengths and limitations of each serverless 
platform in the context of supporting AI-driven CPS, 
IoT, and robotics applications. 

VI. PROOF-OF-CONCEPT RESULTS

This section presents the gathered results and metrics 
of the system and proposed improvements to the system. 
The developed agents were deployed to the cloud and 
metrics were gathered. The second (RQ2) and third 
research question (RQ3) are addressed in this section. 

Deployment times varied slightly across platforms, 
with Azure Functions taking between 30 and 70 seconds, 
Google Cloud Functions between 30 and 80 seconds, 
and AWS Lambda demonstrating slightly faster times, 
ranging from 30 to 60 seconds. 

Cold start latency, which measures the delay before 
function execution after an idle period, ranged from 0.5 
to 5 seconds for Azure Functions, 0.5 to 3 seconds for 
Google Cloud Functions, and 0.5 to 1 second for AWS 
Lambda, indicating superior cold start performance for 
AWS Lambda. Hot start latency is minimal at less than 
one second for each provider. 

Maximum execution time limits varied across 
platforms. The Execution Time Limit varies slightly, 
with Azure Functions permitting up to 10 minutes, GCF 
allowing 9 minutes, and AWS Lambda extending to 15 
minutes. 

The number of fail points in the agent graph is 
contingent on the complexity of the workflow, including 

the number of nodes and tools used. This factor is con-
sistent across all three platforms, indicating that 
workflow design is critical for minimizing failures. 

Scalability is inherently managed by all platforms, 
with Azure Functions automatically scaling up to 200 
instances, GCF accommodating up to 1000 instances for 
v2 functions, and AWS Lambda handling a default 
regional concurrency limit of 1,000, which can be further 
scaled upon request. 

Resilience is ensured through multi-region and 
multi-zone deployment capabilities. Azure Functions 
supports deployment across regions and Availability 
Zones, Google Cloud Functions employs geographic 
redundancy, and AWS Lambda operates across multiple 
Availability Zones within a region to tolerate localized 
failures.  

Reliability is managed by integrated monitoring 
and logging tools: Azure Functions leverages Azure Mo-
nitor. Google Cloud Functions utilizes Cloud Monito-
ring. AWS Lambda integrates with Amazon Cloud 
Watch. 

All platforms follow a pay-per-use pricing model 
with variations in execution costs. Finally, Costs are 
structured on a pay-per-use basis, with Azure Functions 
and AWS Lambda charging $0.20 per million executions 
after the free tier, whereas GCF is priced slightly higher 
at $0.40 per million invocations post free tier. 

This comparative analysis underscores the strengths 
and slight variances among the serverless platforms. 
Analysis provides insights for selecting the most appro-
priate service. 

VII. IMPROVING THE PROPERTIES
OF SERVERLESS CLOUD SYSTEM

This section provides a description of the methods 
and approaches for improvements based on the 
simplified cloud system model. The third research 
question (RQ3) is addressed in this section. 

Each agent operates independently and has its own 
probability of failure. The system is considered fully 
operational only when all components are functioning 
correctly. Failure events can occur at multiple levels: 
cloud provider failures, cloud infrastructure failures, 
virtualization failures, operating system-level failures, 
microservice-specific failures, unexpected events, 
dependency issues, network problems, infrastructure 
issues, third-party dependency failures, security 
vulnerabilities, configuration errors, failures due to high 
load, deployment issues, system errors, or microservice 
runtime errors. While microservice developers, DevOps 
engineers, and IT experts can control and manage cloud 
infrastructure resources, custom virtualization 
configurations, and the microservices themselves, they 
cannot maintain the underlying cloud provider’s 
infrastructure. 

To improve scalability, serverless functions should 
be stateless and idempotent by design, allowing for 
horizontal scaling without complications related to state 
management. The next step is to define whether the 



Serverless AI Agents in the Cloud 

agent graph is loaded dynamically or exist inside the 
function/lambda code. Having the agent graph and its 
properties in environment variables or loaded dynami-
cally from data storage provides more flexibility. Even 
when the agent graph is not complex, e. g. has up to 3 
nodes or they are serially executed, the probability of 
having some error increases. The same is for code 
complexity. 

Therefore, to reduce the agent function complexity 
we need to use function templates, keep the agent logic 
in environment variables or dynamically load from the 
database. The graph should be validated before the 
execution and deployment. Each function/lambda need 
to have an internal mechanism of error fail-safe handling 
or fail-fast when the business logic allows it. 

Availability may be enhanced by deploying ser-
verless functions across multiple regions and availability 
zones provided by the cloud provider. At least 3 zones 
are recommended. It is important to balance the physical 
distance between the regions and zones to reduce the 
network latency. This geographic distribution mitigates 
the impact of localized outages and ensures continuous 
operation. Implementing health checks and automated 
failover mechanisms allows the system to reroute traffic 
to healthy instances seamlessly in case of failures. 

For the current AI agent’s precise validation end 
error handling is necessary to improve the reliability. 
Retry mechanisms for the tool calling, handling various 
responses from LLMs, non-deterministic reasoning 
should be scoped within the valid range of operations. 
Utilizing monitoring tools like AWS CloudWatch or 
Azure Monitor provides real-time insights into system 
performance and errors. 

Implementing circuit breaker patterns allows the 
system to isolate failing components and prevent 
cascading failures. Conducting chaos engineering expe-
riments helps identify system weaknesses by intentio-
nally introducing faults and observing system responses. 
This proactive approach leads to a more robust system 
capable of withstanding the unpredictability of CPS and 
IoT deployments.  

Real-world cloud systems are open to errors due to 
the inherent instability of execution environment. These 
systems incorporate hardware devices, edge computing 
tools, and real-time interactions with physical 
environments, making them vulnerable to disruptions 
such as network fluctuations, hardware failures, and 
environmental variability. However, the responsibility 
for these issues is on the cloud provider. 

Edge computing introduces significant challenges, 
including intermittent connectivity, power instability, 
and limited resources in decentralized environments. 
These issues impact both reliability and overall system 
performance, underscoring the need for fault-tolerant 
architectures to ensure adaptability in dynamic condi-
tions. Consequently, these challenges highlight the cri-
tical need for the development of robust, fault-tolerant, 
and reliable architectures that can adapt to dynamic 
conditions. 

VIII. CONCLUSION
This research explores scalable AI agents in the 

cloud and tests the effectiveness of serverless cloud 
architectures. Azure Functions, Google Cloud Functions, 
and AWS Lambda were tested for deploying AI agents. 
Critical properties such as availability, resilience, 
reliability, and scalability were investigated. The study 
highlights the strengths and drawbacks of serverless 
architectures. 

Features like multi-region deployments, automatic 
failover mechanisms, and inherent scalability make 
serverless architectures highly adaptable to the dynamic 
and variable workloads characteristic of CPS, IoT, and 
robotics applications. However, several limitations, such 
as latency caused by cold starts, resource constraints on 
execution time and memory, and integration challenges 
with real-time systems, which can impact time-sensitive 
and resource-intensive AI agent workflows. 

Through a comparative analysis addressing RQ2, 
AWS Lambda demonstrates slight advantages in SLA 
availability (99.95%), execution time limits (15 
minutes), and scalability (default concurrency of 1,000 
instances), making it a strong candidate for demanding 
applications. Azure Functions and GCF are competitive, 
where GCF excelling in maximum instance scalability 
(up to 1,000 instances for v2 functions). Despite these 
differences, all three platforms share common strengths, 
such as reliability through robust error handling and 
resilience mechanisms like fault isolation and failover 
strategies. Cost analysis revealed that Azure Functions 
and AWS Lambda are more economical, charging $0.20 
per million executions, compared to GCF’s $0.40 per 
million invocations. 

To address the limitations identified in RQ3, 
several strategies are proposed to enhance serverless 
deployments. Multi-region and multi-zone deployments, 
combined with health checks and automated failover, 
improve availability by mitigating localized outages. 
Resilience can be strengthened through circuit breaker 
patterns and chaos engineering to prevent cascading 
failures and identify vulnerabilities. Reliability is enhan-
ced with robust error handling, idempotent operations, 
and real-time monitoring for consistent performance and 
fault recovery. Scalability can be improved by 
leveraging event-driven architectures, stateless designs, 
and edge processing to reduce latency and central server 
load. These enhancements establish serverless architec-
tures as a robust and scalable foundation for AI agents in 
CPS, IoT, and robotics, supporting intelligent systems in 
complex, dynamic environments. 
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