
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 2, 2024

SERVERLESS AI AGENTS IN THE CLOUD
Oleh Chaplia1, Halyna Klym1, Edgars Elsts2

1Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine,
2Institute of Solid State Physics, University of Latvia, 8, Kengaraga, Riga, LV-1063, Latvia.
Authors’ e-mails: oleh.y.chaplia@lpnu.ua, halyna.i.klym@lpnu.ua, edgars.elsts@cfi.lu.lv

https://doi.org/10.23939/acps2024.02.115

Submitted on 15.10.2024

© Chaplia O., Klym H., Elsts E., 2024

Abstract: Integrating AI agents within serverless archi-
tectures offers a modern approach to deploying and exe-
cuting intelligent applications. Leveraging the advantages
of serverless computing, AI agents can dynamically
respond to varying workloads without the overhead of
managing the underlying infrastructure. This article
explores the concept of scalable serverless AI agents in the
cloud, detailing their architecture, benefits and drawbacks,
challenges, and real-world applications. The paper pro-
vides advantages and drawbacks of the serverless appro-
ach. Then a proof-of-concept has been developed, deployed
and tested. The AI agent code was deployed to Azure
Functions, Google Cloud Functions, and AWS Lambda and
tested. As a result, improvements to availability, resilience,
reliability, and scalability qualities have been proposed to
mitigate the previously defined drawbacks.

Index Terms: cloud computing, cyber-physical systems,
AI agents, microservices, serverless

I. INTRODUCTION
The rapid advancements in Cyber-Physical Systems

(CPS), Internet of Things (IoT), and robotics have
increasingly relied on intelligent systems to enable
autonomous and efficient operations [1]. Self-adaptive
AI, robotic and CPS systems enhances the integration
with the environments with higher-level process-oriented
systems [2].

AI approaches, machine learning and deep learning,
LLMs, and modern AI agents play a crucial role in these
domains, leveraging complex reasoning capabilities,
semantic processing, and integration with physical
environments through sensors and actuators [3].

Deploying these agents in the cloud offers sig-
nificant advantages, including scalability, accessibility,
and cost-effectiveness. Among various cloud deploy-
ment models, microservices and serverless architectures
have gained prominence due to their ability to dyna-
mically manage resources and simplify operations [4].
However, the unique demands of CPS, IoT, and robotics
pose challenges to serverless systems, particularly in
terms of availability, resilience, reliability, and scala-
bility, data security, privacy, latency for real-time appli-
cations [5].

Modern AI agents are commonly a software prog-
rams with the deterministic or non-deterministic flows.
Recent advances in LLMs pushed the boundaries for

agents into more non-deterministic operation, including
Natural Language Processing (NLP) and generative AI
approaches [6].

New agent frameworks AutoGEN, LangChain,
LangGraph and similar help the agent software develop-
ment by automating many interactions between the
agents, LLMs and tool calling [7]. These software agents
can be deployed to the cloud and orchestrated. Best
practices like modularity and independence, presented in
microservice and serverless architecture, help to manage
swarms of these agents.

The Azure Functions, Google Cloud Functions, and
AWS Lambda platforms enable the execution of event-
driven functions that automatically scale in response to
demand, providing flexibility and cost-efficiency [8].
The usage of serverless architectures provides the ability
to dynamically scale, provide reliable, high-available
solutions and handle various workloads [9]. Additio-
nally, cloud-based AI agents benefit from reduced infra-
structure management overhead.

This research aims to evaluate the effectiveness of
serverless cloud architectures, using Azure Functions,
Google Cloud Functions, and AWS Lambda, for dep-
loying AI agents. Research paper provides the literature
review and analysis of their advantages and drawbacks
concerning availability, resilience, reliability, and
scalability, while addressing challenges in execution and
deployment. AI agents powered by LLMs and supplied
with inputs, outputs, and knowledge, are assessed in
terms of integration into dynamic scalable environments.
The paper proposes improvements to mitigate identified
drawbacks, and contributes to the optimization of AI
agents operation and deployments.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

This section presents a literature review, exploring
the challenges, existing solutions, cloud architectures,
system designs, and their advantages and limitations.
The first research question (RQ1) is addressed in this
section.

The development and deployment of AI agents for
CPS, IoT, and robotics presents unique challenges,
particularly in the areas of availability, resilience,
reliability, and scalability. AI agents are characterized by

Oleh Chaplia, Halyna Klym, Edgars Elsts 116

their ability to use knowledge, interact with external
tools and systems, and execute tasks autonomously in
dynamic and often unpredictable environments [3].

AI agents in cloud environments, running within
serverless containers to execute functions, enable advan-
ced capabilities like managing agent swarms and inter-
agent function calls, but also introduce development and
deployment complexities [10].

Microservices architecture, similarly to serverless,
recommends developing and deploying small indepen-
dent services. These best practices can be applied to code
of AI agents, which may be optimized for a serverless
invocation and orchestration [11].

Serverless computing has transformed microservice
deployment by abstracting infrastructure management
and enabling scalability, yet it poses challenges in state
management, fault tolerance, and ensuring exactly-once
execution semantics amid failures and re-executions
[12].

Integrating serverless with IoT highlights Fog and
Edge computing’s potential to enhance performance
through decentralization, but reliance on centralized
architectures raises issues like vendor lock-in and data
privacy [13].

Traffic simulation using microservices, agents, and
RESTful interfaces offers scalability, configurability,
semantic interoperability, and support for diverse agent
frameworks but faces challenges like network overhead
and microservice management complexity [14].

A multi-agent framework leveraging Large Lan-
guage Models (LLMs) was proposed to enhance
productivity and reliability in industrial task automation.
While demonstrating collaborative potential, further
research is needed to optimize agent interactions and
refine operational protocols [15].

Enhanced resource management and task schedu-
ling was achieved by using multi-agent system approach
[16]. Better solutions needed to improve the reliability of
cloud applications while accommodating the inherent
complexities of microservice architectures and MAS.

Based on the conducted literature review, RQ1—
which asks about the advantages and drawbacks of using
serverless cloud architectures for deploying AI agents in
CPS and robotics—can now be addressed.

AI agents deployed in serverless and microservice
architectures address the dynamic demands of CPS, IoT,
and Robotics. Serverless systems ensure availability
through redundancy, resilience via automatic failure
recovery, reliability through error handling and robust
infrastructure, and scalability by adjusting resources in
real-time under cloud-managed SLAs. However, chal-
lenges persist, including latency from edge-cloud distan-
ces, security and privacy risks from data transmission,
state management complexities due to stateless
functions, vendor lock-in, and integration difficulties
with CPS infrastructure. Addressing these requires archi-
tectural strategies such as edge computing, encryption,
and multi-cloud solutions for secure, efficient deploy-
ments.

III. SCOPE OF WORK AND OBJECTIVES
The main objective of this research is to evaluate

the effectiveness of serverless architecture for AI agents
in the cloud for CPS, IoT, and robotics.

This paper examines the cloud system architecture,
execution and deployment of AI agents within serverless
cloud architecture—specifically Azure Functions,
Google Cloud Functions, and AWS Lambda—and the
agent graph execution. The paper defines advantages and
drawbacks of using three serverless platforms for agent
execution environment. The scope of this work covers an
analysis of key properties, challenges and issues inherent
in integrating these agents into environments. The study
reviews at least fifteen research papers, which were
filtered, to synthesize current methodologies, identify
best practices, and highlight gaps in existing knowledge.
Then, based on the defined drawbacks the improvements
are proposed to the associated execution and deployment
in the scope of availability, resilience, reliability, and
scalability qualities.

The research seeks to address the following
questions. The first research question (RQ1) asks what
the advantages and drawbacks are of using serverless
cloud architectures for deploying AI agents concerning
availability, resilience, reliability, and scalability. The
second research question (RQ2) asks how Azure Func-
tions, Google Cloud Functions, and AWS Lambda com-
pare in supporting the deployment and operational effi-
ciency of AI agents in CPS, IoT and robotics applicati-
ons. The third research question (RQ3) asks to propose
an availability, resilience, reliability, and scalability im-
provements to mitigate the previously defined draw-
backs.

Through addressing these objectives, the paper
aims to contribute to the improvement of intelligent
systems in serverless cloud environments.

IV. SERVERLESS ARCHITECTURE FOR AI
AGENTS

This section defines a serverless cloud system
architecture and its components for executing AI Agents.
The first (RQ1) and second research questions (RQ2) are
addressed in this section. This is the reference
architecture for the research paper, which is used for
modelling, gathering metrics, testing, and validation.
This architecture may be modified for other specialized
needs according to the system requirements.

Fig. 1 presents a high-level architecture model
illustrating the interaction between components in a
distributed system integrating microservices, serverless
environments, edge processing, data storages, sensors
and actuators, external services, message queues,
monitoring and logging.

Web apps are providing the user interface for the
users. Microservices are deployed to the execution
environments via CI/CD pipelines. Microservice scope
contains servers, web apps and data storage for
controlling, monitoring, operating the AI agents. AI

Serverless AI Agents in the Cloud

agents use a CI/CD pipeline for deployment to the cloud-
native serverless execution environment. Agents are
connected to the data storage, messaging queues,
external services, monitoring and logging systems.

Fig. 1. Cloud system architecture

Fig. 2 illustrates the architecture of an AI agent.
The agent code, which is an agent graph or an algorithm,
serves as the central orchestrator, connecting key compo-
nents: memory, reasoning, a Large Language Model
(LLM), tools, sensors, actuators, and external services.

Fig. 2. The architecture of the AI agent

Reasoning module processes inputs to derive
actionable insights. Memory provides persistent storage
for contextual information, enabling stateful operations.
Sometimes it is necessary to have an internal state cache
to handle the execution flow. The LLM enhances natural
language understanding and decision-making, while
tools extend the agent’s capabilities for specialized
computational tasks. External services provide additional
computational resources and functionalities via APIs.
This architecture facilitates efficient interaction between
sensing, reasoning, and actuation in complex systems.

Agents can also interact with edge devices. Edge
processing capabilities allow the system to maintain
partial functionality even during network disruptions.
Edge devices have bidirectional connections with
multiple subsystems, including Robots, CPS, and IoT
devices. Sensors capture real-world inputs, which are

processed to inform the agent’s decisions, and actuators
execute these decisions in the physical environment. As
a result, the system contains the cloud computing
components connected to the physical world and vice
versa. This may be useful for building digital twins,
simulations, and two-way interactions.

The proposed system leverages modular micro-
services and serverless execution environments to scale
horizontally and vertically to varying workloads with
fine-grained resource allocation. Computational resour-
ces are provisioned and de-provisioned in near real-time.
This architecture allows for efficient scaling not only
within cloud environments but also at the edge, where
processing workloads can be distributed to edge nodes
for local execution, reducing latency and central server
load.

High availability is ensured through redundancy
mechanisms across the system’s microservices, server-
less functions, and data storage. Redundancy is provided
by the cloud provider using regions, availability zones,
and geography according to their SLAs. The integration
of messaging queues and pub/sub frameworks provides
asynchronous communication, decoupling service
dependencies and ensuring message delivery during
failures. Sometimes direct requests between the agents
may fail, therefore it is valuable to use message queues.
The system’s resilience and reliability are enhanced
through fault-tolerant design, including fail-safe agent
code, retry patterns, circuit breakers, and recovery for
non-deterministic exceptions from LLM responses or
undefined behavior.

The architecture incorporates reliable data storage
on the cloud provider’s end that support replication and
synchronization across multiple nodes for data integrity
and availability. OS and Robotic operation systems
(ROS) are designed as is, however they use fail-safe
mechanisms to handle disruptions in sensor or actuator
data. The use of monitoring and logging across the
overall system facilitates proactive fault detection and
remediation.

Fig 3. highlights the interaction between users,
microservices, AI agents, and various connected sys-
tems. At the top level, Users interact with microservices,
which serve as the intermediary layer, connecting to AI
Agents for advanced computational capabilities. These
AI agents form the central processing layer, acting as the
intelligence hub within the system.

Fig. 3. Use cases for the cloud system

Oleh Chaplia, Halyna Klym, Edgars Elsts 118

V. PROOF-OF-CONCEPT IMPLEMENTATION
This section presents a summary of the proof-of-

concept implementation. According to the previously
defined model a simplified version of the model was
developed, deployed, and tested. The critical parts of the
proposed system architecture model were implemented
and deployed to the cloud.

The focus was on the AI agent’s implementation.
Each AI agent was represented as a piece of the software
written in Python. These AI agents utilized LLMs and
external tools to perform data analysis, decision-making,
and control actions. AutoGEN and LangGraph were
used. Leveraging serverless platforms, each AI agent
was deployed as an independent function. Manual and
automated scaling mechanisms from the cloud provider
were tested. The same AI agents were deployed across
three major cloud platforms: Azure Functions, Google
Cloud Functions, and AWS Lambda.

The deployment phase involved configuring each
serverless platform to host the AI agents, setting up
event triggers and connections. System’s performance
was tested against availability, resilience, reliability, and
scalability metrics. Automated deployment pipelines
were established using CI/CD tools. Additionally, resi-
lience was tested by inducing controlled failures within
the system to verify the agents’ capability to recover and
maintain operational continuity. Reliability assessments
focused on uptime statistics and error rates.

The results from the PoC implementation provided
insights, strengths and limitations of each serverless
platform in the context of supporting AI-driven CPS,
IoT, and robotics applications.

VI. PROOF-OF-CONCEPT RESULTS

This section presents the gathered results and metrics
of the system and proposed improvements to the system.
The developed agents were deployed to the cloud and
metrics were gathered. The second (RQ2) and third
research question (RQ3) are addressed in this section.

Deployment times varied slightly across platforms,
with Azure Functions taking between 30 and 70 seconds,
Google Cloud Functions between 30 and 80 seconds,
and AWS Lambda demonstrating slightly faster times,
ranging from 30 to 60 seconds.

Cold start latency, which measures the delay before
function execution after an idle period, ranged from 0.5
to 5 seconds for Azure Functions, 0.5 to 3 seconds for
Google Cloud Functions, and 0.5 to 1 second for AWS
Lambda, indicating superior cold start performance for
AWS Lambda. Hot start latency is minimal at less than
one second for each provider.

Maximum execution time limits varied across
platforms. The Execution Time Limit varies slightly,
with Azure Functions permitting up to 10 minutes, GCF
allowing 9 minutes, and AWS Lambda extending to 15
minutes.

The number of fail points in the agent graph is
contingent on the complexity of the workflow, including

the number of nodes and tools used. This factor is con-
sistent across all three platforms, indicating that
workflow design is critical for minimizing failures.

Scalability is inherently managed by all platforms,
with Azure Functions automatically scaling up to 200
instances, GCF accommodating up to 1000 instances for
v2 functions, and AWS Lambda handling a default
regional concurrency limit of 1,000, which can be further
scaled upon request.

Resilience is ensured through multi-region and
multi-zone deployment capabilities. Azure Functions
supports deployment across regions and Availability
Zones, Google Cloud Functions employs geographic
redundancy, and AWS Lambda operates across multiple
Availability Zones within a region to tolerate localized
failures.

Reliability is managed by integrated monitoring
and logging tools: Azure Functions leverages Azure Mo-
nitor. Google Cloud Functions utilizes Cloud Monito-
ring. AWS Lambda integrates with Amazon Cloud
Watch.

All platforms follow a pay-per-use pricing model
with variations in execution costs. Finally, Costs are
structured on a pay-per-use basis, with Azure Functions
and AWS Lambda charging $0.20 per million executions
after the free tier, whereas GCF is priced slightly higher
at $0.40 per million invocations post free tier.

This comparative analysis underscores the strengths
and slight variances among the serverless platforms.
Analysis provides insights for selecting the most appro-
priate service.

VII. IMPROVING THE PROPERTIES
OF SERVERLESS CLOUD SYSTEM

This section provides a description of the methods
and approaches for improvements based on the
simplified cloud system model. The third research
question (RQ3) is addressed in this section.

Each agent operates independently and has its own
probability of failure. The system is considered fully
operational only when all components are functioning
correctly. Failure events can occur at multiple levels:
cloud provider failures, cloud infrastructure failures,
virtualization failures, operating system-level failures,
microservice-specific failures, unexpected events,
dependency issues, network problems, infrastructure
issues, third-party dependency failures, security
vulnerabilities, configuration errors, failures due to high
load, deployment issues, system errors, or microservice
runtime errors. While microservice developers, DevOps
engineers, and IT experts can control and manage cloud
infrastructure resources, custom virtualization
configurations, and the microservices themselves, they
cannot maintain the underlying cloud provider’s
infrastructure.

To improve scalability, serverless functions should
be stateless and idempotent by design, allowing for
horizontal scaling without complications related to state
management. The next step is to define whether the

Serverless AI Agents in the Cloud

agent graph is loaded dynamically or exist inside the
function/lambda code. Having the agent graph and its
properties in environment variables or loaded dynami-
cally from data storage provides more flexibility. Even
when the agent graph is not complex, e. g. has up to 3
nodes or they are serially executed, the probability of
having some error increases. The same is for code
complexity.

Therefore, to reduce the agent function complexity
we need to use function templates, keep the agent logic
in environment variables or dynamically load from the
database. The graph should be validated before the
execution and deployment. Each function/lambda need
to have an internal mechanism of error fail-safe handling
or fail-fast when the business logic allows it.

Availability may be enhanced by deploying ser-
verless functions across multiple regions and availability
zones provided by the cloud provider. At least 3 zones
are recommended. It is important to balance the physical
distance between the regions and zones to reduce the
network latency. This geographic distribution mitigates
the impact of localized outages and ensures continuous
operation. Implementing health checks and automated
failover mechanisms allows the system to reroute traffic
to healthy instances seamlessly in case of failures.

For the current AI agent’s precise validation end
error handling is necessary to improve the reliability.
Retry mechanisms for the tool calling, handling various
responses from LLMs, non-deterministic reasoning
should be scoped within the valid range of operations.
Utilizing monitoring tools like AWS CloudWatch or
Azure Monitor provides real-time insights into system
performance and errors.

Implementing circuit breaker patterns allows the
system to isolate failing components and prevent
cascading failures. Conducting chaos engineering expe-
riments helps identify system weaknesses by intentio-
nally introducing faults and observing system responses.
This proactive approach leads to a more robust system
capable of withstanding the unpredictability of CPS and
IoT deployments.

Real-world cloud systems are open to errors due to
the inherent instability of execution environment. These
systems incorporate hardware devices, edge computing
tools, and real-time interactions with physical
environments, making them vulnerable to disruptions
such as network fluctuations, hardware failures, and
environmental variability. However, the responsibility
for these issues is on the cloud provider.

Edge computing introduces significant challenges,
including intermittent connectivity, power instability,
and limited resources in decentralized environments.
These issues impact both reliability and overall system
performance, underscoring the need for fault-tolerant
architectures to ensure adaptability in dynamic condi-
tions. Consequently, these challenges highlight the cri-
tical need for the development of robust, fault-tolerant,
and reliable architectures that can adapt to dynamic
conditions.

VIII. CONCLUSION
This research explores scalable AI agents in the

cloud and tests the effectiveness of serverless cloud
architectures. Azure Functions, Google Cloud Functions,
and AWS Lambda were tested for deploying AI agents.
Critical properties such as availability, resilience,
reliability, and scalability were investigated. The study
highlights the strengths and drawbacks of serverless
architectures.

Features like multi-region deployments, automatic
failover mechanisms, and inherent scalability make
serverless architectures highly adaptable to the dynamic
and variable workloads characteristic of CPS, IoT, and
robotics applications. However, several limitations, such
as latency caused by cold starts, resource constraints on
execution time and memory, and integration challenges
with real-time systems, which can impact time-sensitive
and resource-intensive AI agent workflows.

Through a comparative analysis addressing RQ2,
AWS Lambda demonstrates slight advantages in SLA
availability (99.95%), execution time limits (15
minutes), and scalability (default concurrency of 1,000
instances), making it a strong candidate for demanding
applications. Azure Functions and GCF are competitive,
where GCF excelling in maximum instance scalability
(up to 1,000 instances for v2 functions). Despite these
differences, all three platforms share common strengths,
such as reliability through robust error handling and
resilience mechanisms like fault isolation and failover
strategies. Cost analysis revealed that Azure Functions
and AWS Lambda are more economical, charging $0.20
per million executions, compared to GCF’s $0.40 per
million invocations.

To address the limitations identified in RQ3,
several strategies are proposed to enhance serverless
deployments. Multi-region and multi-zone deployments,
combined with health checks and automated failover,
improve availability by mitigating localized outages.
Resilience can be strengthened through circuit breaker
patterns and chaos engineering to prevent cascading
failures and identify vulnerabilities. Reliability is enhan-
ced with robust error handling, idempotent operations,
and real-time monitoring for consistent performance and
fault recovery. Scalability can be improved by
leveraging event-driven architectures, stateless designs,
and edge processing to reduce latency and central server
load. These enhancements establish serverless architec-
tures as a robust and scalable foundation for AI agents in
CPS, IoT, and robotics, supporting intelligent systems in
complex, dynamic environments.

References
[1] Serôdio, C., Mestre, P., Cabral, J., Gomes, M., & Branco,

F. (2024). Software and Architecture Orchestration for
Process Control in Industry 4.0 Enabled by Cyber-
Physical Systems Technologies. Applied Sciences, 14(5),
Article 5. DOI: 10.3390/app14052160

[2] Guldner, A., et al. (2023). A framework for AI-based
self-adaptive cyber-physical process systems. it -

Oleh Chaplia, Halyna Klym, Edgars Elsts 120

Information Technology, 65(3), 113–128. DOI:
10.1515/itit-2023-0001

[3] Goel, S. (2024). Towards building Autonomous AI
Agents and Robots for Open World Environments. New
Zealand.

[4] Chaplia, O., Klym, H., & Popov, A. I. (2024). An
Approach to Improving Availability of Microservices for
Cyber-Physical Systems. ACPS, 9(1), 16–23. DOI:
10.23939/acps2024.01.016

[5] Raith, P., Nastic, S., & Dustdar, S. (2023). Serverless
Edge Computing—Where We Are and What Lies Ahead.
IEEE Internet Computing, 27(3), 50–64. DOI:
10.1109/MIC.2023.3260939

[6] Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R.,
Liang, P., & Bernstein, M. S. (2023). Generative Agents:
Interactive Simulacra of Human Behavior. arXiv. DOI:
10.48550/arXiv.2304.03442

[7] Wu, Q., et al. (2023). AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation. arXiv. DOI:
10.48550/arXiv.2308.08155

[8] Kaur, N., & Mittal, A. (2021). Fog Computing Serverless
Architecture for Real-Time Unpredictable Traffic. IOP
Conference Series: Materials Science and Engineering,
1022(1), 012026. DOI: 10.1088/1757-899X/1022/1/012026

[9] Aslanpour, M. S., Toosi, A. N., Cheema, M. A., Chhetri,
M. B., & Salehi, M. A. (2024). Load balancing for
heterogeneous serverless edge computing: A
performance-driven and empirical approach. Future
Generation Computer Systems, 154, 266–280. DOI:
10.1016/j.future.2024.01.020

[10] Liu, Z., Zhang, Y., Li, P., Liu, Y., & Yang, D. (2023).
Dynamic LLM-Agent Network: An LLM-agent
Collaboration Framework with Agent Team
Optimization. arXiv. DOI: 10.48550/arXiv.2310.02170

[11] Al-Doghman, F., Moustafa, N., Khalil, I., Sohrabi, N.,
Tari, Z., & Zomaya, A. Y. (2023). AI-Enabled Secure
Microservices in Edge Computing: Opportunities and
Challenges. IEEE Transactions on Services Computing,
16(2), 1485–1504. DOI: 10.1109/TSC.2022.3155447

[12] Kallas, K., Zhang, H., Alur, R., Angel, S., & Liu, V.
(2023). Executing Microservice Applications on
Serverless, Correctly. Proceedings of the ACM on
Programming Languages, 7. DOI: 10.1145/3571206

[13] Merlino, G., Tricomi, G., D’Agati, L., Benomar, Z.,
Longo, F., & Puliafito, A. (2024). FaaS for IoT: Evolving
Serverless towards Deviceless in I/Oclouds. Future
Generation Computer Systems, 154, 189–205. DOI:
10.1016/j.future.2023.12.029

[14] Jagutis, M., Russell, S., & Collier, R. (2023). Flexible
simulation of traffic with microservices, agents & REST.
International Journal of Parallel, Emergent and
Distributed Systems, 38(6). DOI:
10.1080/17445760.2023.2242183

[15] Crawford, N., et al. (2024). BMW Agents—A
Framework for Task Automation Through Multi-Agent
Collaboration. DOI: 10.48550/ARXIV.2406.20041

[16] Liu, Z., Yu, H., Fan, G., & Chen, L. (2022). Reliability
modelling and optimization for microservice-based cloud
application using multi-agent system. IET
Communications, 16(10). DOI: 10.1049/cmu2.12371

Oleh Chaplia was born in
Lviv, Ukraine. He is a PhD student
in the Specialized Computer Sys-
tems Department at Lviv Polytec-
hnic National University, where he
received his BSc and MSc degrees
in Computer Engineering. Since
earning his master’s degree in 2015,
he has worked in software engine-
ering, specializing in designing and
developing enterprise-grade cloud

solutions with innovative technologies and high-quality
architectures. His research interests include cloud computing,
distributed systems, and artificial intelligence.

Halyna Klym doctor of tech-
nical sciences, professor, professor
of the department of specialized
computer systems of the Institute of
Computer Technologies, Automa-
tion and Metrology of Lviv Poly-
technic National University. In
2016, she received a Doctor of
Science degree in Physical and
Mathematical Sciences at Lviv Po-
lytechnic National University. She

soluconducts lecture courses on the design of ultra-large
integrated circuits and methods and means of automated design
of computer systems. She is an author of more than 170
scientific articles in international publications.

Edgars Elsts is a PhD in
Physics, Senior scientist at the
Institute of Solid State Physics,
University of Latvia, one of the
world’s leading experts in the field
of solid-state radiation physics,
sensor materials for cyber-physical
systems.

