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Abstract: Timely detection and prevention of agriculture 
vehicles malfunctions are key approaches to reducing 
maintenance costs, as well as updating and replacing 
equipment, and reducing the cost of growing agricultural 
crops. In this article an approach for Remaining Useful 
Life (RUL) prediction that utilizes a combination of 
telemetry, maintenance, and geospatial data (such as 
weather and terrain information) as input to a Long Short-
Term Memory (LSTM) algorithm has been considered. The 
results have shown that the models trained on the dataset 
enriched with geospatial data outperformed the models 
that relied solely on telemetry and maintenance data, 
demonstrating the benefits of including location-specific 
factors. However, the model's RUL prediction applicability 
for electric and hydraulic systems needs further 
exploration due to the current dataset limitations. 

Index Terms: Agriculture vehicles, GIS, IoT, LSTM, 
Predictive Maintenance, RUL 

I. INTRODUCTION
The value of agricultural machinery depends on its 

reliability and operational efficiency, as it is 
manufactured to withstand thousands of hours of service. 
However, breakdowns still occur, and many repairs take 
place on the farm itself. In recent years, the complexity 
of modern equipment has made this practically 
impossible. The most important aspect of vehicle 
management in agriculture is timely and high-quality 
repair and maintenance. According to a study [1] about 
95% of the tractors had at least one malfunction that 
occurred during fieldwork and made it impossible to 
continue using the tractor. Still, the frequency of 
agricultural machinery breakdowns varied among 
regions. It can also be concluded that only a quarter of 
the malfunctions can be resolved quickly. All other 
malfunctions will require more time for repair, as the use 
of service centers imposes such delays: transportation of 
agricultural machinery to and from the service center, 
availability of necessary parts at the service center, 
availability of resources that can perform maintenance at 
the service center, or the length of the queue for service 
appointments. During seasonal work, which is 
accompanied by serious resource shortages that limit the 
availability of service workers and spare parts, such 
delays can be critical for farmers, as this can reduce the 

amount of harvest that can ultimately be collected. Costs 
of owning and operating farm machinery represent 35% 
to 50% of the costs of agricultural production when the 
land is excluded [2]. 

In addition, the large-scale aggression of the 
Russian Federation has significantly worsened working 
conditions and reduced the possibilities for exporting 
agricultural products by sea routes, which negatively 
affects the financial performance of farms. Additionally, 
it is necessary to note the problem of loss of agricultural 
machinery due to military actions or theft by Russian Fe-
deration military personnel. At present, the main vege-
table-growing regions of Ukraine, which produced and 
sold over 35% of vegetables on an industrial scale, are 
still partially occupied or are in close proximity to the 
combat zone. Currently, as a result of military interven-
tion, about 20% of gross commercial vegetable produc-
tion and 46% of melon production has been lost [3]. 

II. LITERATURE REVIEW AND PROBLEM
STATEMENT 

In the industrial use of machines and equipment, 
maintenance and repair are carried out according to one 
of three strategies - reactive maintenance, preventive 
maintenance, or predictive maintenance - with the latter 
two approaches aimed at reducing the number of 
unexpected failures [4]. 

In the case of reactive maintenance, machines, and 
equipment are operated until a defect or malfunction 
occurs, which is then corrected. For this strategy, 
maintenance is not planned, and components are used for 
as long as possible, which reduces the cost of spare parts 
but makes machines more vulnerable to becoming ino-
perable when a malfunction occurs. This approach re-
sults in significant unpredictability in fleet management, 
ultimately driving up maintenance expenses [5] 

In the preventive maintenance strategy [6], 
equipment is replaced before a defect occurs. The usage 
interval is usually determined in relation to operating 
hours, based on experience or predetermined mainte-
nance intervals set by manufacturers. Thus, equipment or 
its components may be replaced before reaching the end 
of their service life, increasing costs compared to 
reactive maintenance. On the other hand, preventive 
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maintenance will reduce unpredictable downtime, as 
maintenance work can be planned before a defect occurs. 
This maintenance is based on theoretical failure 
frequency rather than the actual performance of specific 
equipment, so there may be situations where a mal-
function occurs earlier than the next scheduled main-
tenance, or a malfunction does not occur even if 
maintenance has not been performed. The frequency of 
scheduled inspections requires careful calibration. 
Overly extended intervals between checks can result in 
increased incident rates, while excessively frequent 
inspections may lead to unnecessarily high maintenance 
expenses. [7] 

According to the predictive maintenance strategy, 
repairs are planned based on the condition of the 
machine or component. Typically, the machine's con-
dition is monitored and analyzed using data from sensors 
installed in the vehicle, while some approaches additio-
nally use data from enterprise resource planning (ERP) 
systems to predict work interruptions. Predictive mainte-
nance (PdM) allows for effective planning of mainte-
nance while simultaneously reducing spare parts costs. 
Unlike preventive maintenance, predictive maintenance 
is more complex to implement, but it is cheaper to use 
and requires less maintenance time, as it occurs only, 
when necessary, that is when a malfunction is predicted. 

Recent research [6,7,8] has seen a surge in the 
application of advanced machine learning techniques to 
predict Remaining Useful Life (RUL) in various 
systems. However, these studies primarily focused on 
analyzing telemetry data received from vehicle built-in 
sensors or from custom sensors, having a notable gap in 
the lack of consideration for geospatial data and factors 
that could potentially play a crucial role in providing 
impact on the lifecycle of farm machinery. 

III. SCOPE OF WORK AND OBJECTIVES
In this paper, the RUL modeling approach for 

agriculture vehicles predictive maintenance using a 
combination of telemetry, maintenance history, and 
geospatial data is proposed. The research addresses the 
following key areas: combining telemetry, maintenance, 
and geospatial data (including weather and terrain 
information) to create a comprehensive dataset for 
analysis; utilizing Long Short-Term Memory (LSTM) 
networks to process the integrated data and predict RUL 
of agricultural equipment; evaluating the performance of 
models trained on the enriched dataset (including 
geospatial data) against models using only telemetry and 
maintenance data. The aim is to make a significant 
contribution to the ongoing discourse on remote health 
monitoring of agriculture vehicles, by developing more 
accurate and precise algorithm for RUL prediction. 

IV. MATERIALS AND METHODS
The proposed approach consists of 4 parts: data 

collection (maintenance, telemetry, weather, and terrain 
data), data integration and preprocessing (combining 

single dataset from input data), deep learning modeling 
(using LSTM algorithm), and RUL prediction. Fig. 1 
shows the proposed RUL prediction model.  

As part of data collection, the dataset with 
agriculture vehicles telemetry and maintenance data was 
received from a cereal farming enterprise based in the 
US. That grain production farm has a strong interest in 
the prediction of the maintenance time of machinery to 
reduce maintenance costs and the cost of crop cultivation 
in order to maintain the ability to compete with other 
market players. The datasets were collected in 2015-
2017 years and collected data about 4 different tractor 
models, 30 total tractors that worked in 3 different 
regions. All tractors passed maintenance prior to 
providing telemetry data that was analyzed, which means 
that their health index was 1 or close enough to 1 at the 
beginning of telemetry collection. The following features 
were extracted from the provided datasets: maintenance 
data features (Table 1), telemetry data features (Table 2).  

Fig. 1. Proposed RUL prediction model 
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Geospatial data, such as weather and terrain, was 
gathered for the areas where the agricultural machinery 
operated. Weather data was collected using 
VisualCrossing (https://www.visualcrossing.com) solu-
tion and the terrain data used in this study was identified 
using CalcMaps (https://www.calcmaps.com) solution. 
The following features were extracted: weather data 
features (Table 3), terrain data features (Table 4). 

Table 1 

Maintenance Data Features 

Name Description 
Timestamp The exact date and time when the 

maintenance entry was recorded 
TractorID A unique identifier for each tractor 

in the fleet 
Model The specific make and model of the 

tractor. 
Region The geographical area where the 

tractor is operating 
Age The number of years since the 

tractor was manufactured or put into 
service 

Mileage The total distance traveled by the 
tractor from the beginning of its 

operational life (km) 
ComponentFailure Indicates which specific part or 

system of the tractor failed 

Table 2 

Telemetry Data Features 

Name Description 
Timestamp The exact date and time when the 

telemetry data was recorded 
TractorID A unique identifier for each tractor 

in the fleet 
EngineRPM Indicates how fast the engine is 

spinning 
FuelProductivity The rate of fuel consumption 

EngineLoad The current engine load as a 
percentage of maximum capacity 

CurrentSpeed The current speed of the tractor 
Power Take Off 

Load 
The amount of power being 

transferred through the Power Take 
Off (PTO) system to operate 

attached implements 
Transmission Load The current stress on the 

transmission system 
Lub Oil 

Temperature 
The temperature of the engine's 

lubricating oil (Celsius) 
Coolant 

Temperature 
The temperature of the engine's 

coolant (Celsius) 
DTC Diagnostic Trouble Codes, which 

are standardized codes indicating 
specific issues detected by the 

tractor's onboard diagnostics system 
GeoLocation The precise geographical 

coordinates of the tractor 

Table 3 

Weather Data Features 

Name Description 
Year The calendar year during which the 

weather data was recorded 
Month The calendar month during which 

the weather data was recorded 
Day The calendar day during which the 

weather data was recorded 
AvgTemperature The average temperature that day 

(C) 
MinTemperature The minimum temperature that day 

(C) 
MaxTemperature The maximum temperature that day 

(C) 
Precipitation The total amount of precipitation 

that day (mm) 
Wind The average wind speed (Km/h) 

Region The geographical area for which 
data is collected 

Table 4 

Terrain Data Features 

Name Description 

MeanElevation The average elevation of the 
terrain (m) 

MinElevation The minimum elevation of the 
terrain (m) 

MaxElevation The maximum elevation of the 
terrain (m) 

StdElevation The standard deviation of 
elevation of the terrain (m) 

MeanSlope The average slope within the 
region (degrees) 

MinSlope The minimum slope within the 
region (degrees) 

MaxSlope The maximum slope within the 
region (degrees) 

StdSlope The standard deviation of slope 
within the terrain (degrees) 

Region The geographical area for which 
data is collected 

After datasets have been collected, they were 
preprocessed and integrated for further usage in 
predictive maintenance scenario. First of all, telemetry 
data was combined with maintenance data using 
TractorID column, and each telemetry record was 
enriched with Time between failures (TBF) calculated 
for every failed component using maintenance history. 
The maintenance dataset contained the history of 
failures, which is why it was possible to calculate TBF 
for every component as a difference between the current 
component failure date and the previous one. The output 
model contained all columns from the telemetry dataset, 
columns Model, Region, Age, and Mileage from main-
tenance dataset and columns EngineTBF, ElecticSys-
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temTBF, HydraulicSystemTBF, and TransmissionTBF. 
When the first two datasets were merged, the output was 
enriched with weather and terrain data using Region 
column and timestamps. It is noteworthy to mention, that 
telemetry data for specific dates and regions contained 
the same weather data, as weather data sampled per day, 
but telemetry is sampled every 30 minutes. Terrain data 
is a constant as it is stable for years. 

Fig. 2 shows the merged datasets with calculated 
TBF.  The merged dataset was split into multiple subsets 
targeting specific components of each tractor model. The 
dataset originally contained information about 4 tractor 
models and 4 components, as a result, 16 distinct da-
tasets were created, each focused on a specific 
component of a particular tractor model. Within each of 
these 16 datasets, the data was cleaned to contain only 
the relevant component's features. The features related to 
other components, as well as any information related to 
the other tractor models, were removed. Such data 
segmentation allowed the development of component-
specific predictive models for each tractor model, 
ensuring the models were trained on the most relevant 
data for each target component. 

Fig. 2. Example of merged datasets with calculated TBF 

The LSTM network excels at capturing sequential 
patterns within data. To uncover the underlying patterns 
in sequential data that were combined in the previous 
step, a two-layer LSTM sub-network is implemented. 
Additionally, a flattened layer is utilized to reshape the 
LSTM output for subsequent data integration. The 
network architecture begins with an input layer that 
branches into two parallel LSTM paths, each followed 
by a dropout layer to prevent overfitting. The dropout 
layers randomly deactivate a portion of neurons during 
training, which helps reduce overfitting and improves the 
model's ability to generalize. The parallel LSTM layers 
are designed to learn temporal dependencies from 
different perspectives of the sequential data. The outputs 

from both paths are then consolidated through a flatten 
layer, which transforms the multi-dimensional data into a 
format suitable for further processing. Subsequently, two 
dense layers perform additional feature extraction and 
transformation before the final output layer produces the 
network's predictions. This architectural design enables 
comprehensive sequential pattern recognition while 
maintaining model generalization through strategic 
dropout implementation. A structure for the LSTM 
network described above is shown in a Fig. 3. 

Fig. 3. LSTM network structure

To evaluate the model’s accuracy, Mean Absolute 
Percentage Error (MAPE) and Coefficient of Determi-
nation (R-squared) metrics were used. It expresses the 
forecast error as a percentage of the actual values, 
providing a relative error metric, and is calculated as the 
sum of the absolute differences between the predicted 
( iy ) and actual ( ix )  RUL values, divided by the actual 
( ix )  RUL values, and then divided by the total number 
of samples (n), and finally multiplied by 100 to express 
the result as a percentage: 

n i i
i 1

i

x y
x

MAPE 100
n

=
−

∑
= ⋅ .   (1) 

R-squared gives a measure that represents how 
close the data is to the fitted regression line. It ranges 
from 0 to 1, where 0 indicates that the model explains 
none of the variability in the target variable around its 
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mean, and 1 indicates that the model explains all of the 
variability in the target variable around its mean. It is 
calculated using the formula: 

( )
( )

2n
i 1 i i2

2n
i 1 i

x y
R 1 ,

x x
=

−
=

−∑
= −

−∑
  (2) 

where iy  – predicted RUL, ix  – actual RUL, and x−  is 
the mean of the actual RUL values that is calculated 
using the formula: 

n
i 1 ixx .
n

− =∑=  (3) 

V. RESULTS
To evaluate the performance of the RUL prediction 

models, 32 models were developed and used as train and 
test sets for LSTM. The first set of 16 LSTM models was 
trained and evaluated for each specific component across 
the 4 different tractor models by utilizing the full set of 
available data, including maintenance and telemetry 
records, as well as geospatial factors such as weather and 
terrain information. A second set of 16 models was 
created to predict the RUL using only the maintenance 
and telemetry data, without considering the geospatial 
data. These models allowed to analyze the impact of 
usage of the geospatial variables on the model's predi-
ctive accuracy. The modeling results for each of the 
models are summarized in Table 5 (note, E means 
Engine Component, ES – Electric System, HS – 
Hydraulic System, and T – Transmission).  

Table 5 

Models Performance Indicators Comparison 

Model Compo
nent 

MAPE 
GIS 

MAE 
No 
GIS 

R² 
GIS 

R² 
No 
GIS 

E 2.78 3.15 0.9099 0.8861 
ES 43.63 45.28 0.5243 0.4811 
HS 30.40 31.53 0.6525 0.6312 1 

T 2.67 3.03 0.9134 0.8911 
E 2.61 3.02 0.9153 0.8845 

ES 43.98 45.62 0.5012 0.4886 
HS 29.97 31.11 0.6892 0.6587 2 

T 2.57 2.94 0.9217 0.9012 
E 2.46 2.89 0.9281 0.8973 

ES 44.35 45.97 0.4786 0.4462 
HS 29.53 30.68 0.7234 0.7165 3 

T 2.41 2.84 0.9351 0.9224 
E 2.28 2.86 0.9415 0.9112 

ES 44.73 46.37 0.4551 0.4329 
HS 29.09 30.25 0.7087 0.6843 4 

T 2.24 2.66 0.94 0.9234 

It can be seen that the LSTM network that 
incorporated geospatial data provides lower MAPE and 
higher R-squared values in Remaining Useful Life 
(RUL) modeling compared to the LSTM network that 
did not utilize geospatial data. This confirms the 
hypothesis that incorporating location-specific factors, 

such as weather patterns, terrain characteristics, and 
environmental conditions, can enhance the accuracy of 
predictive maintenance models. The improved perfor-
mance metrics suggest that geospatial features capture 
important contextual information about asset degradation 
patterns that might be missed in traditional time-series-
only approaches. The integration of geospatial data not 
only improves model accuracy but also provides deeper 
insights into how geographic and environmental variab-
les influence asset deterioration rates, potentially ena-
bling more targeted and efficient maintenance strategies 
across different operational contexts. However, current 
dataset can be used only to predict RUL for Engine and 
Transmission components. Fig. 4 shows RUL prediction 
accuracy for Machine ID 1 and Engine Component.  

Fig. 4.  RUL Prediction with and without GIS Data  
for Machine ID 1 and Engine Component 

Fig. 5. RUL Prediction with and without GIS Data 
 for Machine ID 1 and Electric System Component 

The RUL prediction for the Electric System and 
Hydraulic System components consistently shows the 
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poorest performance for both the GIS and NO GIS 
models (Fig. 5). This indicates that data available in 
telemetry and maintenance datasets may not be sufficient 
to accurately predict the remaining useful life of the ES 
and HS components. 

The insights gained from this experiment can be 
used in future research and development efforts in the area 
of predictive maintenance. It is worth suggesting the need 
for further investigation of the features to build modeling 
approaches for accurate forecasting of the RUL of the 
Electric System and Hydraulic System components. 
Potentially, this required data can be obtained through the 
integration of additional data sources, such as CAN-bus or 
external sensors. It is also important to investigate the 
impact of geospatial data on the performance of other 
deep learning models, such as CNN, DBN, RNN, etc., as 
they can show different results. 

VI. CONCLUSION
Existing studies do not consider geospatial data, such 

as weather and terrain conditions, while modeling 
predictive maintenance approaches for agriculture vehicles, 
and use only data received from tractor or maintenance 
data. In this paper, RUL prediction model using a 
combination of telemetry, maintenance, and geospatial data 
was researched. Datasets for experiments were obtained 
from a cereal farming enterprise based in the US and used 
for performance evaluation of the proposed approach. 
Results of the research revealed that the accuracy of the 
LSTM algorithm for RUL prediction that used weather and 
terrain information is higher compared to the same 
algorithm that does not utilize geospatial factors. However, 
the applicability of the model for RUL prediction of 
Electric System and Hydraulic System needs further 
exploration as datasets used for experiment did not contain 
enough data that can be utilized for prediction, therefore, it 
is important to identify features that can be suitable for it. 
Also, it is proposed to evaluate the impact of geospatial data 
on other deep learning algorithms for predictive 
maintenance of agriculture vehicles. 
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