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Abstract: The paper describes a constant time clustering 
algorithm that can be applied on wireless sensor networks. 
The scheme for rate control, scheduling, routing, and power 
control protocol for wireless sensor networks based on 
compressive sensing has been shown. Using network utility 
maximization formulations, cross-optimization solutions 
using Lagrangian multipliers in network access control and 
physical layers have been presented. The optimization 
solutions have been developed by solving the optimization 
model of network utility maximization. The paper presents 
a cross-sectional design problem that jointly maximizes 
network utility and lifetime. The solution to the problem 
leads to the optimal source rate as well as the optimal routes 
between each source and sink in the network. The presence 
of a common sink node in the network has been formulated 
to develop a distributed algorithm that minimizes the energy 
overhead in its implementation. 

Index Terms: Wireless sensor networks, cross layer, 
optimization, network utility maximization, algorithm. 

I. INTRODUCTION
Nowadays, due to the rapid advancement of the 

Internet in all aspects of science and technology around 
the world, the intention of researchers and scientists has 
grown to find the best localization methods for optimizing 
Wireless sensor networks (WSNs). 

Generally, WSNs are formed of a group of small 
sensor nodes in order to communicate with each other in 
which they have been fitted by some restrictions in their 
memory, energy and processing capacity in wireless 
format. 

 Based on main concept of WSNs, sensor nodes by 
routing capabilities will be scattered in a sensor field. Also, 
according to location of sensor nodes, random deployment 
can be allowed in inaccessible areas.  Yang et al., 
formulated optimization solutions by limiting the network 
topologies specified in the WUM by the NUM [1]. 

Wireless sensor networks have played an important 
role in Internet of Things. Data transfer is one of the most 
important features of WSNs. 

The optimal transmission policy will be imple-
mented through NUM combined with CS in transport, 
network, MAC, and physical layers, respectively. 

While there are several ways to characterize 
application performance, in this paper, we characterize it 
using a network utility function which is the sum of 

individual node utility functions [2]. The utility of each 
node is assumed to be an increasing and strictly concave 
function of its source rate, thus reflecting the application 
performance. Distributed algorithms for solving the 
network utility maximization problem in the context of 
wired networks are studied  by Low and Lapsley [3]. 

We consider distributed algorithms for two types of 
sensor networks—those with unique routes from each 
source to sink and, in general, with potentially multiple 
routes between them. Although the proposed algorithms 
for these two types of networks are similar in flavor, their 
convergence properties differ significantly. Furthermore, 
such differences between networks may arise in practice 
due to the presence or absence of a network layer routing 
protocol that selects unique routes between sources and 
sinks. Thus, the distinction between these two types of 
networks is interesting from both an analytical and a 
practical point of view. 

II. LITERATURE REVIEW
AND PROBLEM STATEMENT 

Khalek et al, proposed the cross-layer transmission 
schemes and derived joint algorithm for media access 
control (MAC), scheduling, and routing through 
optimization theory, and comprehensively studied the 
state of the art for wireless communication at the 
application, transport, network, MAC, and physical layers 
[4]. 

To achieve network optimization, improved data 
transmission strategies based on maximum utility or 
cross-layer ideas without full consideration of the sparse 
feature of the original data and the efficiency of the data 
transmission were used [5].  

Sankar and  Liu, have studied distributed routing 
algorithms and cross-design approaches to increase 
network lifetime. [6]. 

Chiang et al. developed an optimization 
decomposition framework [7] to design distributed 
protocols for the transport and network layers that enable 
network performance. 

In this paper, we characterize it using a network 
utility function which is the sum of individual node utility 
functions [8]. The utility of each node is assumed to be an 
increasing and strictly concave function of its source rate, 
thus reflecting the application performance. Distributed 
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algorithms for solving the network utility maximization 
problem [9] in the context of wired networks are studied 
in [10]. The network utility formulation has been used in 
[11], in the cross-layer design of transport, network, and 
radio resource layers for maximizing the throughput or 
network. 

III. SCOPE OF WORK AND OBJECTIVES 
The aim of the paper is to demonstrate a cross-

sectional design problem that jointly maximizes the utility 
and lifetime of the network. Solving the problem leads to 
optimal source rates as well as optimal routes between 
each source and sink in the network. Through an 
optimization decomposition framework, we show that the 
cross-layer design problem is decomposed both vertically 
(across different layers of the protocol stack) and 
horizontally (between network nodes) into simpler 
subproblems, allowing for a fully distributed solution. 

The proposed formulation exploits the presence of a 
common sink node in the network to design a distributed 
algorithm that minimizes the energy overhead in its 
implementation. By studying the distribution of 
proportionally fair rates in networks, we discuss practical 
design implications through analysis and numerical 
simulations. 

IV. SYSTEM MODEL 
We present a model of power dissipation in nodes 

and various algorithms for wireless sensor networks. 
A wireless sensor network consists of nodes that can 

communicate with each other via wireless links. One way 
to support efficient communication between sensors is to 
organize the network into several groups, called clusters, 
with each cluster electing one node as the head of cluster. 

Many clustering algorithms for sensor networks 
were proposed in the last few years. Younis and Fahmy 
proposed HEED (Hybrid Energy-Efficient Distributed 
clustering) as a probabilistic clustering algorithm [12]. An 
improved version of HEED was offered by researchers 
Hesong Huang and Jie Wu [13]. 

The pseudo code of the extended algorithm (called 
the Extended HEED) is shown in Fig. 1. In the first round 
the core algorithm is used, where each node will check if 
its cost is the least among its neighbors. If it is the node 
with the lowest cost, it will set itself as core head, 
otherwise, it will set the least cost neighbor a core. 

After the core election, the cluster head election will 
exclude the non-core nodes. The entire election process 
(step II in the pseudo code) repeats until the values for 
CHprob of all nodes reach 1. 

In the final round, final CHs are considered as CHs, 
and tentative CHs non-CHs. 

Fig. 2 shows an example of the Extended HEED. 
There are 500 nodes deployed in a 100 £ 100 area, with a 
transmission range of 10 and an initial CHprob of 0.01. 
The algorithm takes 7 rounds and elects 64 CHs 
(represented by black nodes). 

 

 
Fig. 1. clustering algorithms for sensor networks 

 
 

 
Fig. 2. The result of Extended HEED 

A solid line represents a wireless link connecting a 
non-CH (represented by white nodes) and its corres-
ponding CH. A dotted line represents a link between a 
non-CH to a CH of a neighboring cluster. In some rare 
occasions, two CHs are neighbors, which is also 
represented by a solid line. 

Thus an extended probabilistic algorithm for Hybrid 
Energy-Efficient Distributed clustering (HEED) adds two 
more steps to eliminate a large quantity of nodes, and only 
potential candidates can survive to participate in the 
cluster head election, it is more efficient than the original 
HEED. 

V. DIRECT PATHFINDING PROBLEM 
According to He et al, the proposed WSN algorithm. 

This method uses the Lagrangian multiplier method to 
solve the problem of cross-layer optimization, so that we 
can jointly achieve optimal speed control, planning, 
routing and power control [14]. 

The cross-layer optimization model  
𝑀𝑀𝑟𝑟

𝑖𝑖(𝐻𝐻𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝑒𝑒−𝐻𝐻𝑗𝑗
𝑖𝑖(𝑡𝑡)   

is approximately convex if the entropy satisfies   
𝑒𝑒−𝐻𝐻𝑗𝑗

𝑖𝑖(𝑡𝑡) ≈ 1 − 𝐻𝐻𝑗𝑗𝑖𝑖(𝑡𝑡). 
The Li and Wang, created the Lagrangian problem 

by resting the speed, power and route constraints as 
follows [15]: 
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𝑳𝑳 (𝑥𝑥 𝑖𝑖   (𝑡𝑡), 𝑓𝑓𝑖𝑖
𝑗𝑗 (𝑡𝑡), 𝐼𝐼𝑖𝑖

𝑗𝑗  (𝑡𝑡),𝐸𝐸𝑖𝑖(𝑡𝑡), 𝛿𝛿𝑖𝑖,𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝛾𝛾𝑖𝑖  ) 

= �𝑈𝑈
𝑁𝑁

𝑖𝑖=1

((𝑥𝑥 𝑖𝑖   (𝑡𝑡), 𝑓𝑓𝑖𝑖
𝑗𝑗  (𝑡𝑡), 𝐼𝐼𝑖𝑖

𝑗𝑗  (𝑡𝑡),𝐸𝐸𝑖𝑖(𝑡𝑡)) 

       +𝛿𝛿𝑖𝑖(𝑡𝑡) (𝑥𝑥 𝑖𝑖   (𝑡𝑡)  +  � 𝑟𝑟𝑗𝑗𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝛾𝛾𝑖𝑖  

)   −  � 𝑟𝑟𝑗𝑗𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝐵𝐵𝑖𝑖  

) 

(1) 
+𝛼𝛼𝑖𝑖 (𝑡𝑡) ( 𝑓𝑓𝑖𝑖

𝑗𝑗 (𝑡𝑡) − (𝑥𝑥 𝑖𝑖   (𝑡𝑡)  − � 𝑟𝑟𝑗𝑗𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝛾𝛾𝑖𝑖  

) 

+𝛽𝛽𝑖𝑖 (𝑡𝑡)𝑀𝑀𝑟𝑟 
𝑗𝑗  (𝐻𝐻𝑗𝑗𝑖𝑖(𝑡𝑡) − 𝑒𝑒−𝐻𝐻𝑗𝑗

𝑖𝑖(𝑡𝑡)  ) 
+ 𝛾𝛾𝑖𝑖  (𝑡𝑡) = ( Ê(t) −  ∑ 𝐸𝐸𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝑡𝑡)), 

where 𝛿𝛿𝑖𝑖,𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑖𝑖  are Lagrangian multipliers 
with the conservation constraints. Because L(.) is only 
piecewise differentiable, used the distributed sub-gradient 
method.  x𝑖𝑖(𝑡𝑡) is the linear function of the transmission 
vector 𝛾𝛾(𝑡𝑡) and the temporal entropy  

x𝑖𝑖(𝑡𝑡) =
𝑣𝑣𝑗𝑗
𝑖𝑖(𝛾𝛾(𝑡𝑡),𝐻𝐻𝑗𝑗

𝑖𝑖(𝑡𝑡))

𝐵𝐵
 .                    (2) 

The temporal entropy  𝐻𝐻𝑗𝑗𝑖𝑖(𝑡𝑡) at time t is calculated 
as follows: 

      𝐻𝐻𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝑀𝑀𝑗𝑗
𝑖𝑖(𝑡𝑡)𝑙𝑙𝑙𝑙 1

𝑀𝑀𝑗𝑗
𝑖𝑖(𝑡𝑡)

,                       (3) 

where 𝑀𝑀𝑗𝑗
𝑖𝑖(𝑡𝑡)={ 𝑁𝑁𝑖𝑖 (t)=j} denotes the transmission 

probability at time t from node I to j. The proposed 
algorithm takes into account the need to distribute speed, 
power, link capacity, and route as well as for node i. In the 
theorems of the Li and Wang, it has been proved that this 
algorithm has optimal properties.  

VI.  RESULTS 
Assume that in a self-tuning network, the sensor 

nodes can change the source frequency depending on the 
application demand. Associated with each source n is a 
function Un(xn) that is continuously differentiable, 
increasing, and strictly concave in xn. The utilities are 
assumed to be additive, so the network utility is defined 
as the sum of the utilities of the individual nodes. The 
network utility maximization (NUM) problem is 
described as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 ∈ 𝑋𝑋∑ 𝑈𝑈𝑛𝑛 (𝑋𝑋𝑛𝑛)𝑁𝑁

𝑛𝑛=1 .                          (4) 
The polyhedral constraint set X together with the 

strictly concave objective function results in a unique 
maximizer x∗ in (1) that is Pareto optimal [14]. 

However, nodes in sensor networks are energy-
constrained, and higher data rates lead to greater energy 
dissipation in data sensing, transmission, and reception. 
Thus, maximizing network utilization may result in 
widely varying energy dissipation levels across nodes and 
may lead to network outages in short periods of time. 

We consider a distributed algorithm for solving the 
utility-lifetime maximization problem (5) 

𝑚𝑚𝑚𝑚𝑚𝑚
    (𝑥𝑥, 𝑣𝑣)𝜖𝜖𝑥𝑥𝑣𝑣   ∑ 𝑈𝑈𝑛𝑛 (𝑋𝑋𝑛𝑛) −𝑀𝑀(𝑢𝑢),𝑁𝑁

𝑛𝑛=1            (5) 

when each sensor node can have multiple paths to 
sink (R ≥ N). 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 ∈ 𝐼𝐼𝑥𝑥,𝑦𝑦 ∈ 𝐼𝐼𝑦𝑦 ,𝑢𝑢 ∈ 𝐼𝐼𝑢𝑢   ∑ 𝑈𝑈𝑛𝑛 (𝑋𝑋𝑛𝑛) −𝑀𝑀(𝑢𝑢)𝑁𝑁

𝑛𝑛=1 , 

subject to, 𝑃𝑃𝑦𝑦 = 𝑋𝑋   𝐵𝐵𝑦𝑦 ≤ 𝑐𝑐 ,  𝐹𝐹𝑦𝑦 ≤ e .           (6) 
Since (6) represents a convex optimization problem 

with only linear constraints, strong duality holds and we 
can obtain the primal optimal solutions indirectly by first 
solving the dual problem. We introduce Lagrange 
multipliers ηϵRN, λϵR+

I , µϵR+
N to formulate the 

Lagrangian dual function corresponding to primal 
problem (6) as below: 

𝑪𝑪 (𝜂𝜂, 𝜆𝜆, 𝜇𝜇) =
𝑚𝑚𝑚𝑚𝑚𝑚

  𝑥𝑥 ∈ 𝐼𝐼𝑥𝑥,𝑦𝑦 ∈ 𝐼𝐼𝑦𝑦 ,𝑢𝑢 ∈ 𝐼𝐼𝑢𝑢 ∑ 𝑈𝑈𝑛𝑛 (𝑋𝑋𝑛𝑛) −𝑁𝑁
𝑛𝑛=1

− 𝑀𝑀(𝑢𝑢)   + 𝜂𝜂𝑡𝑡( 𝑃𝑃𝑦𝑦 −  𝑋𝑋  ) , 
             𝜆𝜆𝑡𝑡 (𝐵𝐵𝑦𝑦 − 𝑐𝑐) −  𝝁𝝁𝑡𝑡  (𝐹𝐹𝑦𝑦 - eu).                           (7) 

The dual function can be decomposed into the 
following three subproblems: 
𝐶𝐶 (𝜂𝜂, 𝜆𝜆, 𝜇𝜇) =  𝜆𝜆𝑡𝑡 𝑐𝑐 +  𝐶𝐶1  + 𝐶𝐶2 (𝜂𝜂, 𝜆𝜆, 𝜇𝜇) + 𝐶𝐶3 (𝜂𝜂, 𝜆𝜆, 𝜇𝜇), 
where  

𝑐𝑐1 (𝜂𝜂, 𝜆𝜆, 𝜇𝜇) = 
=   

𝑚𝑚𝑚𝑚𝑚𝑚
  𝑥𝑥 ∈ 𝐼𝐼𝑥𝑥,𝑦𝑦 ∈ 𝐼𝐼𝑦𝑦,𝑢𝑢 ∈ 𝐼𝐼𝑢𝑢 ∑ 𝑈𝑈𝑛𝑛 (𝑋𝑋𝑛𝑛) −𝑁𝑁

𝑛𝑛=1

− 𝜂𝜂𝑡𝑡( 𝑃𝑃𝑦𝑦 − 𝑋𝑋  ),                     (8) 

  𝐶𝐶2(𝜂𝜂, 𝜆𝜆, 𝜇𝜇) =
𝑚𝑚𝑚𝑚𝑚𝑚

   𝑦𝑦 ∈ 𝐼𝐼𝑦𝑦    (𝜂𝜂𝑡𝑡  𝑃𝑃 −  𝜆𝜆𝑡𝑡 𝐵𝐵 − 𝜇𝜇𝑡𝑡𝐹𝐹)𝑦𝑦  = 

=  �0 𝑖𝑖𝑖𝑖𝜂𝜂𝑡𝑡  𝑃𝑃 ≤  𝜆𝜆𝑡𝑡 𝐵𝐵 + 𝜇𝜇𝑡𝑡𝐹𝐹
∞,     otherwise  ,                   (9) 

𝐶𝐶3(𝜂𝜂, 𝜆𝜆, 𝜇𝜇) =
𝑚𝑚𝑚𝑚𝑚𝑚

    𝑢𝑢 ∈ 𝐼𝐼𝑢𝑢 𝜂𝜂𝑡𝑡 (e u) - 𝑀𝑀(𝑢𝑢).        (10) 
The dual problem corresponding to the primal 

problem in (6) is then given by min C( 𝜂𝜂, 𝜆𝜆, 𝜇𝜇) subject to 

 λ ≥ 0, µ ≥ 0, ηt P ≤  λt B + µ^t .            (11) 

Each of the three subproblems (8), (9), and (10) 
evaluates variables corresponding to different layers of 
the protocol stack and thus they represent a vertical 
decomposition of the primal problem (6). The cross-layer 
interaction between the different layers is coordinated 
through the dual variables and the distributed algorithm 
presented below represents a further horizontal 
decomposition.  

The dual objective function (7) is not differentiable 
because the objective function (6) is not strictly concave 
in all first variables. Therefore, a subgradient-based 
descent approach is used to solve the dual problem (11). 
Using Danskin's theorem [17], the subgradients (η, λ, μ) 
of the dual objective function ∂D (η, λ, μ) can be obtained 
from the set of maximizers Z = {(x, y, v) } (7). 

From (9), if 𝑦𝑦𝒓𝒓∗ > 0 for some  𝒓𝒓∗∈ R(n), then for all 
other routes 𝒓𝒓′  ∈ R(n), 

𝜂𝜂𝑛𝑛 = (𝜆𝜆𝑡𝑡 𝐵𝐵 + 𝜇𝜇𝑡𝑡  𝐹𝐹)𝑟𝑟∗ ≤   (𝜆𝜆𝑡𝑡 𝐵𝐵 − + 𝜇𝜇𝑡𝑡  𝐹𝐹)𝑟𝑟′  .    (12) 
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Interpreting λ and µ as link congestion price and 
node lifetime price, respectively, the route-price of route 
r is given by (𝜆𝜆𝑡𝑡 𝐵𝐵 + 𝝁𝝁𝑡𝑡  𝐹𝐹).  

From (12), all routes from a node with nonzero flows 
have an equal cost, which is the minimum cost of a route 
compared to other routes from the same node. 

Thus, the routing algorithm involves each node 
choosing a source rate based on the minimum route cost. 
Finally, we summarize the distributed algorithm for 
networks with multipath routing. At the kth iteration: 

• source rate and route flow update: Each node n 
computes the minimum route-price among all its routes 
and updates its source rate as below: 

𝑥𝑥𝑛𝑛  (k + 1) = �𝑈𝑈𝑛𝑛
/−1   ((𝜆𝜆𝑡𝑡 𝐵𝐵 + 𝝁𝝁𝑡𝑡  𝐹𝐹) 𝒓𝒓∗  �

𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  

 (13) 

• link and node prices update: Using subgradient-
based descent, each node n updates its node-price µn and 
link-prices λl, where l is an outgoing link from the node 
along any of its routes to the sink  ηn  and λl  

𝜆𝜆𝑙𝑙  (𝑘𝑘 + 1) = �𝜆𝜆𝑙𝑙(𝑘𝑘) − 𝛼𝛼(𝑐𝑐 − � 𝑦𝑦𝑟𝑟(𝑘𝑘)
𝑟𝑟𝑟𝑟𝑟𝑟(𝑙𝑙)

�

+

,  

𝜂𝜂𝑛𝑛 = ⌊𝜂𝜂𝑛𝑛(𝑘𝑘) − 𝛼𝛼(𝑒𝑒𝑛𝑛𝑣𝑣(𝑘𝑘) − ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑦𝑦𝑟𝑟(𝑘𝑘)𝑟𝑟 ⌋+,     (14) 

where α > 0 is a constant scalar step size. 
For constant step size as in the above algorithm show 

that the (arithmetic) averages of the primal and dual 
iterates approach the optimal solutions for large number 
of iterations, provided the subgradients are bounded and 
the step size is chosen small enough. Since the primary 
variables in our model are bounded, the subgradients are 
bounded, and the simulation results show that the primary 
and dual variables approach optimal values within a finite 
number of iterations. 

The optimal source rates, route flows, and network 
lifetime are plotted in Fig.3, Fig. 4, and Fig. 5, 
respectively. 

 

 

Fig. 3. Distributed Algorithm 2: Source rates 

 

Fig. 4. Distributed Algorithm 2 (multipath routing): Route 
flows 

 
Fig.5. Distributed Algorithm 2 (multipath routing): 

Network lifetime 

VII. CONCLUSION 
The article showed the analysis of clustering and 

joint control algorithms for maximization in wireless 
touch networks. It was focused on a joint optimization 
strategy based on CS in physical, MAC, network, and 
transport layers. 

This article presented the implementation of a cross 
layer optimization design for data transmission in WSNs 
consisting of rate control, scheduling, routing, and power 
control. Taking into account the relationships among rate, 
routing, link capacity, and energy allocation, NUM was 
proposed for efficient data transmission and optimal 
solutions were solved by the Lagrangian multiplier 
method. 

The performance of the proposed algorithm, in 
theory and practice, perfectly achieved the desired 
solutions. We used framework networks with 
proportional rate distribution and studied practical design 
issues by characterizing the optimal utility trade-off curve 
by showing numerical simulations of the proposed 
distributed algorithms. In the case of multipath routing, 
since each node could have routes to multiple sinks, the 
weighted node-prices could be communicated to every 
sink so that the network inverse-lifetime update was 
computed by all sinks in the network. 

Alternatively, by forming a spanning tree within the 
network with a particular sink as its root, the weighted 
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weighted node-prices only needed to be communicated 
to this sink which computed the network lifetime 
updates. The analysis and proposed algorithms in this 
paper could also be extended to other generalizations of 
the system model involving multiple commodities in the 
network. Finally, the methodology proposed in this 
paper was generally applicable to any energy-
constrained wireless network. 
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