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Authors studied the Lopatynsky condition to single out among properly elliptic differential
equations in the Douglis—Nirenberg sense those ones with given boundary conditions that
generate an elliptic problem. This condition can be written in various ways, in particular,
in algebraic form also. A new algebraic formulation of this condition is found and an
algorithm for its verification is presented. Examples of its verification are given as well.
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1. Introduction

Elliptic theory is a classical theory of partial differential equations that has been developing over the
last century. It covers elliptic equations and systems, pseudo-differential equations, overdetermined
systems of equations, etc. The results of this theory are published in numerous monographs [1-10] and
articles [11-14].

General boundary value problems for systems of elliptic equations were first considered in 1953 by
Ya. B. Lopatynsky [15]. In addition to the ellipticity of the equations system, the condition of properly
ellipticity and the condition of complementarity or the covering condition, connecting the differential
expressions that define the system of differential equations and boundary conditions, are formulated.

The latter condition is called the Lopatynsky condition (one special case of the condition is simul-
taneously used in [16]).

This condition also arises when considering parabolic problems, nonlocal and other ones [17-21].
The algebraic formulation of the Lopatynsky condition is often used [1,9,11,12].

The paper proposes a new algebraic formulation of the Lopatynsky condition. At the same time,
the algorithm for verifying an elliptic problem becomes simpler and clearer.

The simplification of the Lopatynsky condition proposed in [22] is not correct, since, for example,
it does not identify the Dirichlet problem for the system of Laplace equations (Au; = 0, Aug = 0) as
elliptic one.

2. Elliptic boundary value problem

Let 2 be smooth compact manifold of dimension n with a boundary I', which is a smooth n — 1-
dimensional manifold without boundary, n > 2. Point x € () is identified with a set of local coordinates
(z1,...,%y), in the neighbourhood of a manifold T' the points are in the form z = (2/,z,), where

' = (x1,...,2,-1) are local coordinates on T

Define dy = d/dt and D = (Dy,...,D,), where D; = —i0; = —id/0x; for j =1,...,n.

Sequences of integers {sj}gzl, {trtoe1s {oj}i=, satisfy the conditions t; > -+ >, > 0 = 51 >
- 2= 8p, 01 = -+ = 05, where p and s are natural numbers.

Consider a boundary value problem

The work was carried out under the state budget topic VM4, No.0121U114596.
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Au=f on Q\I', Bu=g on T, (1)

where u and f are height p columns of functions on €2, and g is height s column of functions on I'.
Matrix differential operator

All . Alp
Auv=| ... .. (2)
Ap1 App
is set on ), where
Ajp = Ajp(z, D) = > afy(x)D* = A (2, D)+ > afy(z)D, (3)
|Oc‘<8j+tk ‘O!|<Sj+tk
if s; 4+t >0, and Aj, =0, if 55 + 1, < 0.
Matrix differential boundary operator
B By
B=| ... (4)
le Bsp
is set on I', where
Bji = Bji(z,D) = Y bi()D* = Bl (e, D)+ Y bf(x)D?, (5)
| <oj+t o <o+t

if oj+1t, >0, and Bj, =0, if 0 + 1, < 0.

Coefficients a?‘k and b;‘k of operators A;‘k and B;?‘k are the smooth complex functions.

Assume that the operator A (system of equations Au = f) is elliptic in the sense of Douglis—
Nirenberg on €2, that is

detap(z,&) #0, x2€Q, &eR"\{0}, (6)
where ag(z,€) = (A?k(x, §))j k—1...p is the main part of the symbol a(z,§) of the operator A.
Matrix ag(x, &) has a homogeneity property

A%1 Ab
CLO('Z'?)‘S) = aO(x7§) ) (7)
%P A\tp
s X p-matrix by(x, &) = (B;.)k(aj, f))jzl,m,s also has a similar homogeneity property
7j=1,...,p
A%t Al
)\0'5 )\tp

Let z € I, an arbitrary real unit vector 7 tangent to I' in the point z, unit vector v = v(z) of the
internal normal at the point x and define ag(z) = ao(z, 7 + 2v), bo(z) = bo(z, T + 2v).

Let us also assume that the operator A is proper elliptic on I', that is, the scalar operator with the
symbol det ag(x, &) is proper elliptic. This means that the polynomial det ag(z) of the variable z has
equal roots (taking into account multiplicity) on both sides of the real axis for all z € T and arbitrary
tangent to I' in the point x vector 7.

This implies that Z§:1(3j + ¢;) is an even positive integer 2s and space M+ = MT (z, ) of stable
(v(t) — 0, if ¢ — 400) solutions v(t) on a semi-axis ¢ > 0 of the ordinary differential equations system
with constant coefficients ag(d;)v = 0 has a dimension s.

Definition 1. The boundary problem (1) is called elliptic if the operator A is proper elliptic and the
Lopatynsky condition is satisfied: at every point x € I' and for every unit vector T tangent to I' in the
point x the problem

ao(dt)v = 0, bo(dt)’u|t:0 =h (9)
is solvable for an arbitrary vector h € C* in the space Mt = M (x, 7).
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Verification algorithm for Lopatynsky condition 1191

More precisely, according to the definition an elliptic problem (1) is called elliptic in the sense of
Douglis—Nirenberg. If sy = ... = s, then the operator A is elliptic in the sense of Petrovsky, so the
boundary value problem (1) is called elliptic in the sense of Petrovsky.

3. Formulation of the Lopatynsky condition

Let the matrix V' = V(t) is a base in space 9T of stable solutions of the system of differential
equations ag(dy)v = 0, where elements are the columns of this matrix, i.e. V = (v1,...,v5). The
Lopatynsky condition is fulfilled if and only if, when the Lopatynsky matrix L(z,7) = bo(d)V|i=0 is
non-degenerate, namely

det L(z, 7) = det (bo(d¢)V]i=0) #0, z €T, 7€8" 7 Lv(z), (10)

where S™ is a unit sphere in the space R™.

For the algebraic formulation, we denote the polynomial ag (z) = (z — 21) ... (z — 25), where z; =
zj(x, T) are roots (taking into account the multiplicity) of the polynomial det ag(z), lying in the upper
open complex half-plane, and a closed simple contour ~y in this half-plane that surrounds the roots
Zlye+eyRg-

Consider p x pt; matrix

V(t) :j([ e“agl(z) (1 z ... 2" 1) ® B, dz,
T+

where ® is Kronecker matrix product, namely (1 Z ... ztl_l) QR FE, = (Ep zE, ... ztl_lEp), tq is the
maximum (according to to Douglas—Nirenberg definition of ellipticity) degree of polynomials being the
elements of the matrix ag(z), E, is unit matrix of order p, then the space 9™ is the linear span of the
matrix V(¢) columns.

The Lopatynsky’s condition is the linear independence of the rows s x pt;-matrix

bo(de)V (t)]e=0 :j{ bo(2) ag ' (2) (1z...""NY®E,dz, (11)
Y+

i.e., it has a full (maximum) rank, therefore rank (bo(d)V (t)|i=0) = s.

Algebraic condition of the form (11) proposed by Ya.B.Lopatynsky in paper [15] for Petrovsky
elliptical (t; = ... = t,) equations systems (1). For elliptic Douglis-Nirenberg systems, the following
condition is given in [14].

Let us define as a® = a°(2) adjoint matrix composed of the cofactors of the corresponding elements
of the matrix ag, for which the formula aga® = det ag - E, is true. Then the matrix V' from (10) can

be rewritten in the integral form
izt

V() = 7{ o(2) H(2)——— dz,

ag (2)
where H(z) is some polynomial p x s-matrix with power less than ¢;, and condition (10) is the non-
degeneracy of the matrix fw bo(2) a®(z) H(z) %, that is
det § Q) H(z) -2 20,
Y+ aO (Z)
where
Q(z) = bo(2) a°(2) (12)

is a rectangular s X p matrix.
This leads to the following algebraic formulation of the Lopatynsky condition:
Rows of the matrix Q(z) are linearly independent modulo polynomial ag (2). (13)
This means that, out of equality CQ(z) = C(z)ag (z), where C is complex s-dimensioned vector,
C(z) is complex p-dimensioned polynomial vector, equality C' = 0 follows.

In the case, when polinomial matrix R(z) are the remainders from division matrix Q(z) by a
polynomial ag' (z), then the Lopatynsky condition is as follows:
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Rows of matrix R(z) are linearly independent. (14)

In scalar case of the problem (1) matrix V is
1 T(2)...af :
V(t) = —7{ G (Z)+ @i (2)) e dz,
2m1 Sy ag (2)

where aar(z) =qo2* +q12° '+ ...+ ¢ and a;'(z) =g T+ 4 g forj=1,...,s.
The Lopatynsky’s condition takes the form
(af(2) ... af(2))

. - S 2)
det (bo(dt) V(t)’t=0) Imi det ji bo(2) aar(z)

dz # 0.

4. New form of the Lopatynsky condition and algorithm for its verification

Let the roots of a complex polynomial ¥(z) = (z — (1)* ... (2 — ()?, where a; + ...+ a, = «, are
ordered, for example, in ascending order of modules, and if the modules are equal, in ascending order
of arguments, and matrix S(z) is a; — 1 differentiated in the point (;, that is, there are derivatives
Ss=1(¢;) for j =1,...,7. Let us enter the numeric matrix Mg,y (¥(2)), which is called the value of
the matrix S(z) at the roots of the polynomial (z).

Definition 2. Value of the matrix S(z) at the roots of the polynomial 1)(z), where z € C, is called
the next block matrix

M) ((2)) = <S(C1)S/(C1)...

ﬁs@l—”(g) 865G

This matrix (in its transposed form) was introduced by P.S. Kazimirs’kii [23] when finding conditions
for the factorization of matrix polynomials [24]. The problem of decomposition of a matrix polynomial
into regular factors was formulated by Ya.B. Lopatynsky [25] and studied it in the work [26].

The following property of this matrix is obvious:

M) ($(2) = (Ms() (2 = Q)™) - M) (= = 6)*))-
If S(2) is a polynomial matrix of degree «, then according to the Taylor formula
1

SDQ)(= -0 = Mo (z - ) | ¥ 79 | s, (16)
(=0

where the size of the unit matrix E is equal to the number of columns of the matrix S(z).
In particular, the coefficients S(z) form the matrix Mg,) (z*t1) and

«

S(2)=>

q=0

| =

|

s

1
1
Sz =Y as@ (0)27 = Mgy (=*T)) | * | @ B (17)
q=0 *’ s
z

Thus, the Lopatynsky condition (14) can be written as follows:
rank Mg, (2°) = s. (18)

For an arbitrary polynomial ¢(z) of degree o — 1 based on (16) and (17) for the matrix S(z) with

p columns we have the formula
M) (¥(2)) = Ms(z) (2%) Wap (¥(2)),
where
Wﬁ,p(¢(z)) = Mcol(l,z,...,zﬁ*1)®Ep (¢(Z)) =Wps (7/’(73)) ® Ep,

and W3 (¥(2)) = Ws1(¢(2)) is Vandermond matrix size 3 X « of polynomial (z).

The equality of ranks follows from the non-degeneracy of the Vandermonde matrix W, (1/1(2)):

rank Mg.) (¥(2)) = rank M) (z%),

and condition (18) transforms as

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1189-1197 (2024)



Verification algorithm for Lopatynsky condition 1193

rank Mp,) (ag (2)) = s. (19)
The remainder matrix R(z) is defined by the matrix equation
Q(z) = Q(2)ag (2) + R(2),

where Q(z) is a polynomial matrix (an incomplete fraction), so for¢ =0,1,...,j—1and j =1,...,r
satisfies the conditions R(9)(z;) = Q@ (z;). That means equality Mp) (a3 (2)) = Mg (ag (2)) of the
values of the matrices R(z) and Q(z) at the roots of the polynomial ad (z).

Finally, we get a new form of the Lopatynsky condition:

for arbitrary x € I', 7 € S™ and 7 L v(x) value of the matrix Q(z) at the roots of

20
polynomial ag (z) has linearly independent rows, that is rank Mg (,)(ag () = s. (20

To test the Lopatynsky condition, we use the following algorithm:

for every vector (z,7) € I' x S™, where 7 L v(z),

1) write out the matrix ag(z) of order p and the matrix by(z) of size s x p,

2) find the matrix a®(2) of order p,

3) calculate the matrix Q(z) = by(z)a’(z) of size s x p,

4) define the polynomial ag (z) of degree s,

5) form a matrix Mg,)(ag (2)) of size s x ps,

6) check whether the rank of the last matrix is equal to s.

If at least for one point (z,7) € T' x 8™, where 7 L v(x), the rank is not equal to s, i.e., it is
smaller, then the Lopatynsky condition for the problem (1) is not satisfied; otherwise, the Lopatynsky
condition is satisfied.

The new form of the Lopatynsky condition does not involve the calculation of the matrix R(2), it
is enough to calculate the value of the matrix Q(z) at the roots of the polynomial ag (z).

For the scalar case (one equation) Q(2) = bo(2) and matrix Mg (ag (2)) is square, so we check
the inequality det My, (. (ag (2)) #0.

5. Example

There are considered a few examples of checking the Lopatynsky condition.

5.1. Failure to satisfy the Lopatynsky condition
Consider the Dirichlet problem for the Bitsadze system of equations

_ _(D3-D? 2D1Dy )\ (w1 _
Au:ao(D)U—<_2D1D2 D2 02) \u, = 0.

The boundary conditions are defined by the matrix B = by(D) = E3 = (}9).
For this problem n = p = s = 2 and bg(§) = bo(2) = F2, ao(2) = ao(T + 2v), a®(z) = a®(7 + 2v),
where £ = (£1,&2), v = (v1,12) = v(z) = (1/1(1'),1/2(33)), T = (— I/Q(l‘),l/l(l')),

(8- 208 (8- 26086 B B
aO(S) - <_22€1€; é‘% _ g%) ’ a’o(f) - < 551521 g% - g%) ’ Q(Z) - bo(Z)CLO(Z) - ao(z)'

Due to the formula

2 2
detag(§) = (& — &7)" +466 = (G +&7)" >0, £#0,
the system is elliptical and for £ = 7 + zv = (zv1 — v, 215 + 1) equation

((z01 — v2)? + (219 + 1/1)2)2 = (2> +1)* =0,
has a double solution z = 4 in the upper complex half-plane.
Thus, af (z) = (2 — )2, the matrix Mg (ag (2)) is rectangular of size 2 x 4 and

Moy (ad (2)) = Maoy ((z —0)?) = (a°(d) a”' (7)),

Q" — dLLO (€)= <2§2V2 =261 =261 — 2511/2)
dz’ 26011 + 2610 289 — 2611 )
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For & = &* = (&5,€3) = 7+ iv = (v1 +ive)(i 1) calculate the next matrices a®(£*) and a” (¢*):

v +in)? —2i(v) +in)?
V= (Gt i st it ) =2 ()1 =

26505 — 26}V —aﬁu—2¢w> ~ <% _ﬁ
07/ ¢x 22 171 o1 1 )
a = * * % % = 2(v + v .
(&) <2£2u1 126y 281 — 281 i) (|

Hence, a” (i) = —ia®(i) and
N 0, . w1 o
Mo (ag (2)) = a’(i)(Ba —iEs) = 2(v1 +ivy) (z) (1 —i —i —1).

Thus, the matrix Mg, (aar (z)) has rank one, i.e. the proportional rows, in particular

(1 )Mo a () = 0.
Therefore, according to the algorithm, the Dirichlet problem for the considered elliptic system of
equations is not elliptic, which was first shown by Bitsadze [27] in 1948.

5.2. An elliptic problem in the sense of Douglis—Nirenberg
Study the Dirichlet problem for the Laplace equation D?u + D3u = 0.
This problem is equivalent to the Dirichlet problem for the system of first order equations

Dius + Douzg =0, Dyu; —us =0, Dou; —u3=0

0 & ¢
with the marix ag(§) = <§1 10 > of the Douglis—Nirenberg structure.
€ 0 —1
’ 1 & &
In this case bg(z) = bo(&) = (1 0 0) and Q(z) = bo(2) a®(z), where a’(¢) = <51 —&3 §15§>. Since
& L1&e —&7
detag(&) = €2 4+ €2 > 0 for € # 0, then the system is elliptic in the Douglis-Nirenberg sense (t; = 2,

to=1t3=1,5 =0, s9 =53 =—1) andag(z):z—i.
Let us calculate Mg, (ag (z)) = My (2)a0(2) (2 — 1), namely
MQ(Z) (ag'(z)) = (1 gf f;) = (1 1V — g —l—’il/g).
The problem under consideration is elliptic one because

rankMQ(z)(aa'(z))zlzs and t1 +tg +t3+ 51+ 89+ 53 =2=2s.

5.3. Navier—Stokes system of equations
Consider in © C R? the first boundary value problem (Dirichlet problem) for the Navier-Stokes equa-
tions

D?uy + D3uy — Dyuz =0, D3ug + D3ug — Doug =0, Dyug + Daug = 0,

U1|F =91, U2‘F =92
and check its ellipticity according to Douglis—Nirenberg.
There is the Douglis—Nirenberg problem (t; =to =2,t3=1, 81 =59 =0, s3=—1, 01 = 09 = —2)
with the matrices

g+8 0 - oo
&1 & 0
moreover the system is elliptical, det ag(¢) = (& + 55)2 > 0 for £ € R?\ {0}, and
£ —&1&2 (G+ )&
a(€) = —&1&2 &2 (&G + &)

—(@+Q)a —(@+8)6 (2+8)

For £ = 7+ zv = (211 — 9, 219 + 1) the equation (5% + 55)2 = 0 is in the form (22 + 1)2 = 0, that is,
the solution z = i (of multiplicity two) is unique in the upper complex half-plane and ag (z) = (2 — ).
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Verification algorithm for Lopatynsky condition 1195

The rectangular 2 x 6 matrix Mg, (ag (2)), where Q(z) = by(2)a’0(2), bo(z) = bo(£),
Q) = ( & -4& (& -1-55)51) Q') = < 28019 —&n =&y 226 +(8 -1-55)1/1)
—&& & (8+8)&)” —&u1—E11o 26111 226+ (61 + &) vo
is calculated using the formula Mg/, (ag (2)) = (Q(i) Q'(7)).
For the vector £ = &* = (£5,&5) = 7+iv = (v1 +ie)(i 1), with absolute value v/2, the next is true

Q) = (v +in)? <_1Z :i 8) = (11 +i)? <_12> (1 —i0),

_ _—2
Q€)= (n +im)? V1+1W2 o, R

Vi+ive v+t
So, let us check the matrix rank Mg, (af (2)):

2 —2
R R e ——
rank Mg(.) (ag (2)) = rank R YR T
— —1 0 -1 - -
vi+ivy v+
= rank .V1+“./2 2V2. _(V1.+ZV2) = 2.
—i(vy +ivg) —(1v1 +ive) 2i 11

The last equalities follow from the linear dependence of the columns (_ll) (:{) (3), o +Z > (522)
and from the calculation of the determinant formed from the second and third columns of the 2 x 3
matrix:
219 —(v1 +ive)
—(V1 —|—’il/2) 2117
It is verified that the problem for Navier—Stokes system under consideration satisfies the Lopatynsky
condition and is therefore an elliptic problem according to Douglis—Nirenberg.

=4 vy — (1/1 +iV2)2 =2ty —1 75 0.

6. Conclusions

This paper proposes a new algebraic form of the Lopatynsky condition for the systems of elliptic type
partial differential equations (properly elliptic systems) in the Douglis—Nirenberg sense. It is shown
how it is related to the known forms of the Lopatynsky condition and a corresponding algorithm for
computing it is presented.

The algorithm for checking the ellipticity of a problem for proper elliptic systems is demonstrated
on the examples of the Dirichlet problem for the Bitsadze system, the Douglis—Nirenberg system
generated by the Laplace operator, and the Navier—Stokes system. In the first case, the Lopatynsky
condition is not satisfied, so the problem is not elliptic, the problems are elliptic in the other cases. The
algorithm consists of constructing the value of matrix at the roots of the polynomial and determining
the completeness of the rank of these value.
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Anropntm nepesipku ymoBu JlonaTUHCLKOro

Lmekis B. C., Kajxeniok II. 1.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

YV pobori mocripkyerbest yMoBa JIONATHHCHKOrO, K& BUKOPUCTOBYETHCH JJIs BUIIIEHHS
cepeJl IPaBUWILHO eJINTUIHUX JudepeHmiaabHux piBHgaHb B cenci J/lyrmica—Hipenbepra i
3aJaHIX KPAMOBUX yMOB TaKWX, IO IMOPO/KYIOTH eqinTudHy 3a1a4dy. Lls ymoBa 3amucy-
€ThCd y PI3HUX BapiaHTax, 30KpeMa B aJIreOPUIHOMY BUTJISII. SHANIEHO HOBE aIreOpudHe
dopmymoBaHHs 11i€l yMOBH 1 momaHo ajroputM i1 mepesipku. Haeneno mpukiamm 11 3a-
CTOCYBAHHSI.

Kntwo4voBi cnoBa: esinmuuni cucmemu; eainmuuni cucmemu 6 cewct  Jysaica—
Hipenbepsa; eainmuuni xpatiosi 3adawi; ymosa Jlonamuncokozo; ymosa 0onosHI08GABHO-
cmi; cucmema Biuadse; onepamop Jlanaaca; cucmema Has’e—Cmoxca.
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