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Abstract: Permanet magnet DC motors ( PM DCM)
have an advantage over electromagnetically excited
commutator motors due to their better energy
performance. The application of analytical methods to
study PM DCM requires significant simplifications, and
the use of field methods is quite labour-intensive. In our
opinion, the use of electric and magnetic circuit methods
makes it possible to achieve the accuracy of calculating
the PM DCM that is sufficient for engineering needs.
The purpose of the article is to develop a mathematical
model of transient processes in PM DCM based on the
use of the theory of electric and magnetic circuits. The
article proposes an equivalent scheme for the magnetic
circuit of PM DCM and a system of equations describing
it. There are given equations for transient processes in
PM DCM and an algorithm for their solution, which
involves the integration of the solution of the system of
equations of the magnetic state at each step. The
proposed mathematical model of transient processes in
PM DCM can be used to analyze these processes, as well
as in design.
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1. Introduction

PM DCM  have an  advantage  over
electromagnetically excited commutator motors due to
the absence of losses in the excitation winding, which
leads to increased efficiency and better use of active
materials. The use of permanent-magnet excitation
makes it possible to simplify the design and reduce the
cost of manufacturing DC micromotors. PM DCM are
widely used in the automotive industry, toys, electrical
household appliances, portable power tools, etc.

The fundamental work [1] considers the use of
permanent magnets in electric machines, including PM
DCM. The ratios for calculating the overall dimensions
of a disk-type magnetoelectric DC motor are given in
[2]. For a built-in DC torque motor with permanent-
magnet excitation, methods of increasing the maximum
torque are proposed in [3]. Methods for reducing the
impact of the armature reaction at the initial moment of

starting the PM DCM of the automobile starter using the
finite element method are considered in [4]. The
influence of the angle of brush displacement from the
neutral on the characteristics of the PM DCM using the
finite element method is studied in [5].

Analytical research methods [2, 3] that require
adopting assumptions for simplification, are the least
accurate, but allow obtaining formulas suitable for
engineering design. The use of field methods [1, 4, 5]
makes it possible to achieve the highest accuracy, but it
is quite labour-intensive. In our opinion, accuracy
sufficient for engineering practice can be achieved using
methods of electric and magnetic circuits. Such an
approach is proposed in [6] to study the magnetic state of
a shaded-pole induction motor using a branched
equivalent scheme of the magnetic circuit. The general
approach to the analysis of the PM DCM based on the
equivalent scheme of the magnetic circuit is presented
in [7], and the branched equivalent scheme is detailed
in [8]. [9] presents an experimental verification of the
adequacy of the calculation of the PM DCM magnetic
circuit.

2. Equivalent scheme of a magnetic circuit and
equation of magnetic state

For the design of the PM DCM with a radially
magnetized permanent magnet in the form of a
parallelepiped, [9] provides an equivalent scheme of a
magnetic circuit with concentrated parameters (Fig.1). In
this scheme, the sections of the air gap correspond to
permanent magnetic resistances, and ferromagnetic
sections correspond to nonlinear magnetic resistances,
represented by the dependence of the magnetizing force
on the magnetic flux F [®].

The active zone of the armature under the magnet
within the pole division is divided by radial planes into
m sections; for the scheme shown in Fig. 1, m = 5.

The system of nonlinear equations of the magnetic
state, composed by the method of contour fluxes,
corresponds to the equivelent scheme of the magnetic
circuit of the PM DCM. In this system, the primary
unknowns are the contour magnetic fluxes, and the
secondary ones are the magnetic fluxes in the branches
of the circuit.
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If, for nonlinear magnetic resistances, the ratio
between contour fluxes and fluxes in branches is taken
into account, then the system of equations of the
magnetic state will have the form (1). This system
contains (m-1) equations of armature, two equations of
the stator circuits, and one equation containing the
elements of the stator and armature, i.e. a total of (m+2)
equations.
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When solving the system of equations of the
magnetic state, it is necessary to know the ratio between
the fluxes in the branches and the contour fluxes.

Let's create column vectors of contour fluxes in the
form of

r
(Dcr:(cb O FP (Dcr(m_l)) — a column vector of

crl

rotor’s contour fluxes;
]

D = Dy, Do, Pis3 ), — @ column vector of stator’s

contour fluxes;
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- a column vector of contour fluxes, or primary
unknowns of size (m + 2).

Let's create column vectors of fluxes in branches and
give the matrices that make it possible to go from

contour fluxes to fluxes in branches
1

D;=(D;y, Psp-.., Py )i @ column vector of

fluxes in air gap sections;
1 1

@, = c,D,, @)
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0 0 0 O0O00O
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of connections with a size of m”~ (m+2);
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vector of fluxes in the sections of the rotor yoke, which
contains m elements;
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-1 00
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([
0 00
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0 0 0 O
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with dimension m”~ (m —1) )

We will present the column vector of fluxes in
branches as
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I I I I I
(1)2:((1)5, q)s’ q)ar' (Dc' q)m)*
Let us write the relationship between the fluxes in
the branches and the contour vector equation

®,= D]

Let us create column vectors of the differences
between the magnetizing forces of the armature sections
and the magnetizing forces of the magnet with a size

(m+2) elements
uua

AT, =
(T T, - T e T =TTy~ Tn,0,0 )

m?’'m

r

F, =(0,0,%,-
Let us write the magnetizing force of the i-th

armature branch of with coordinate n; in the form [10]

-F..F, ).

T Tamax (2 Tli /T);

3a,b
Tomac = (N7 4p)x(i, 12,), (32.0)
where m; is the angle between the i-th branch of the
armature and the pole axis; t is the pole division; i,
represents the motor armature current; N is the total
number of conductors of the armature winding; 2a stands
for the number of parallel branches; p is the number of
pairs of poles.
Let us transform (3 a, b) into the form

N11
[ Ian KT'ale

2p2art @

where k = ﬁil - constant coefficient for this PM
2p2at

DCM.
In the (M — 1) equations of the armature circuits and in
the equation with the elements of the stator and armature
circuits, there are differences in the magnetizing forces
of the armature branches, which will be presented in the
form
AT =T, - T(|+1) K, (Tli_n(m)) (5)

Let us create a column vector of armature’s branch

coordinates

I

1= (n,M,,%4,1,,0,0),

Then the column vector of the differences in the
magnetizing forces of the armature sections will be
written in the form

uua

T\ = ktiactﬁ
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1 -1 0 0 0 00O
0 1 -1 0 0 O00O
0 0 OO 0 00O
where ¢, =0 0 0 1 -1 O O is a square
-1 0 0 0 -100
0 60 0 0 0 00O
0 0 0 0 0 00O

matrix of size (m+2).

Therefore, the nonlinear system of equations of the

magnetic circuit of the PM DCM, written according to

Kirchhoff's laws, in vector form will have the form
[ R [ | [ I

fed, @, 4+ AT, +F,=0, ©,=f[D,].(6a,b)

Let us apply Newton's iterative method to solve this

system. By substituting the linear vector equation (6b)

]
into (6a), secondary unknowns @, can be excluded, but

then we will obtain a cumbersome and inconvenient
system to solve.

We will use the algorithm given in [11] to solve
system (6a,b). The linear vector equation generated by
system (6 a, b) of nonlinear vector equations at the j-th
iteration will have the form

Al XA&)@ - _ﬁgi-l) ’ ©)

I ,.

where A(I)l‘) is the correction of the root at the j-th
iteration;

Fen 0o g L) s rr

Y =t ¢l oY U+ AT, +F, is the value of
the discrepancy calculated for the (j-1)th approximation

1 1

of the unknowns @, and @,

A(j_l) - m(J_l) + m(J_l) Xm:sé_l) , (8)
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m{'™ : -" :
dd,
r. . r . i
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do, dd,

is the value of the denvatlves calculated for the (j-1)-th
approximation of the vectors (D and CD

1
To obtain the (j-1)-th approximation of the root @, ,
we use the formula

I

U = b+ AdD). ©



Mathematical Model of Transient Processes of DC Motor with Permanent-Magnet Excitation 15

3. Equations of transient processes and algorithm
for their solution

To calculate the transient processes in PM DCM, it
is necessary to integrate numerically the system of
differential equations containing the equation of voltage
balance and the equation of armature motion. We will
use the explicit method of numerical integration, which
involves solving the system of equations of the magnetic
state (5 a, b) at each step of integration, i.e. finding the
fluxes in the branches of the equivalent scheme. Based
on these data, we determine the working magnetic flux
of the air gap, the electromotive force of the armature
winding, the electromagnetic moment and the
differential inductance of the armature winding - the
quantities that are included in the equations of the
voltage and moment balance.

Let us write the voltage equation of the PM DCM in
the form

d¥v

dt
where W, is the total flux coupling of the armature
winding; ra is the total resistance of the armature circuit;
€a is the electromotive force of the armature winding; ua
is the applied voltage.
The electromotive force of the armature winding is
determined by the well-known formula [10]

a+ia ra+ea_ua=0' (10)

e, =C, *ord;, (11)
where ® is the angular frequency of rotation of the

armature; @ is the total flux in the air gap;
cw= (PN)/(2ma) is the coefficient constant for a

given PM DCM.
The flux @; is equal to the sum of the fluxes of
individual sections of the air gap

T m m
®,=1,iB.d,=I,&B, An = &b, (12)
0 i=1 i=1

where |, is the active length of the armature steel; B, is
the magnetic induction of the area of the air gap with the
coordinate n; An; is an arc that corresponds to the i-th
section of the air gap.

Let us present the total flux coupling of the armature
winding as the sum of the flux coupling caused by the
field in the air gap Wa and the flux coupling of the
scattering fields Wao

V=W t¥e (13)

| Lo is the

leakage inductance of the armature winding, A4 is the
specific leakage inductance of the armature winding,
which is determined according to known formulas [10].

where W, =L_.i,; L= Lo

Differentiating (13) with respect to time t, we obtain

av, _dv, | di,

—, 14
dt dt © dt (14
Let us transform equation (14) into the form
d¥,, _ ¥, di, _ di, .
@ T, d . at
4P ;. gi gi (15)
——a = i+ L i: L.+L i
dt ©dt  dt (b * L) dt

Taking (15) into account, let us transform equation
(10) into a form convenient for numerical integration

%=;(u —i, 1, -€,).
dt  (Lg+ly,) & °° °

(16)
Let us write the flux coupling of the armature
winding, due to the working flux, in the form
N
¥Y.=—;.
ad 2a 3
Taking into account (2), we obtain

(17)

m r r
Dy = &Dy = Gy 1D; =Cy (Co1 D), (18)
i=1

where ¢y = (1, 1,...1) is a row vector consisting of m
single elements.
From (17) and (18) we write

I

d¥ N & dd,0
= =0y Gyt
e

L
® di 2a di 4

(19)

Therefore, to determine the differential inductance
Las at each step of integration, it is necessary to find the

]
derivative d®, / di . Differentiating system (6 a, b) with
respect to the current i, gives

I I
df S(I)}-'(I)ZHXd(Dl N df gq),l’q)ZHqu)z

dd, di, dod, di, .(20a)
r
+Kk, *c *n=0
do, dD, dd
2 y-—F2x—L =0, (20b)
di, @, di,
After transformation (20 a,b) we obtain
1
AX%=—KTXCTXH , (21)
i

a
where A is the value of the Jacobi matrix according to

).



16 Vasyl Malyar, IhorHavdo

Let us solve (21) with respect to the derivative Let us determine the electromagnetic moment of the
] motor due to the fluxes in the areas of the air gap
dd, (., 4 r
T_(A )X(— KTXCT><1‘|). (22)
a D, ™ .
Substituting (22) into (19), we obtain M= 2|07ad B, l;i,dn=
N ; 5 ° 5 , (25)
- é -1 - U - 2 H - -
L= s (A )x( keom)d L (29) _2p7a£11 B, I; T,An; =2p—* 1,8 ;.
Let us present the equation of moments of PM DCM in
the form Taking into account (18), we obtain
do
— =My, - My, (24) D, . r
a0 Moy =2p—2 1, Cy (c8 XCI>1) : (26)

where Men is the electromagnetic moment of the motor; Mo
is the resistance moment of the mechanism on the shaft; J is
the moment of inertia of the armature.

Fig. 1. An equivalent scheme of the PM DCM magnetic circuit/
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4, Conclusions

The complete system of equations of transient
processes of the PM DCM consists of the system of
equations of the magnetic state and equations of balance
of voltages and moments. The system of equations of the
magnetic state corresponding to the equivalent scheme
and the algorithm for its solution are presented. The
mathematical model of the PM DCM is based on a
branched equivalent scheme of the magnetic circuit. The
equations of balance of voltages and moments of the PM
DCM are presented. The algorithm for finding the
required quantities (magnetic flux of the air gap,
electromotive force of the armature winding,
electromagnetic moment and differential inductance of
the armature winding) at each step of integration is given
based on the results of the previous solution of the
system of equations of the magnetic state. The proposed
mathematical model of transient processes of the PM
DCM can be used to analyze these processes, as well as
in design.

References

[1] J.F. Gieras, Permanent magnet motor technology.
Design and applications, CRC Press Taylor and
Francis Group. London, New York, 2010.
https://www.researchgate.net/file.PostFileLoader.ht
mi?id=5916ac245b49523d143b0c12&assetKey=AS
%3A493445925924865%401494658084441

[2] P.N.Belyi, "Equations for designing embedded
magnetoelectric  disc motors”, Techniczna
elektrodynamika, no. 6, pp. 53-56, 2005. (Russian)

[3] H.V. Lazariev, Y.V. Rybka, M.O Reutskyj, A.A.
Kriachok, and A.A. Shymanska, "Increase of
maximum torque of special DC electric motors with
permanent magnets”, Visnyk National Technical
University "KhPI", Elektrotekhnika i
elektromekhanika, vol. 16, no. 2, 2020. (Ukrainian)
http://vestnik2079-

5459 .khpi.edu.ua/article/view/283760;
doi:10.20998/2413-4295.2023.02.04

[4] N.P. Labbe, R. Andreux, J.-P. Yonnet, A.
Vauquelin, and J.-P. Vilain, "Innovative permanent-
magnet starter motors for automotive micro-hybrid
applications”, Electrical Machines (ICEM) 2014
International Conference. pp. 2436 — 2441, 2014.
DOI:10.1109/ICELMACH.2014.6960528

[5] Daichi Takura, Kan Akatsu “Variable characteristics
DC motor by changing brush lead angle to expand
the operating range”, Power Electronics and ECCE
Asia (ICPE-ECCE Asia) 2015, 9th International
Conference, pp. 695-700, 2015.
DOI:10.1109/1CPE.2015.7167859

[6] V.S. Maliar, L.I. Hluchivskyi, A.V. Maliar, D.P.
Hreczyn, and I.R. Havdo, "The magnetic circuit of a
single-phase asynchronous engine with split poles”,
Energetika. lzvestija vysshych uczebnych zadevanij
and energeticzeskich obedynenij SNH. Minsk, no. 3,
p. 17-25, 2003. (Russian)
https://doi.org/10.21122/1029-7448-2003-0-3-17-25/

[7] V.S. Maliar and I.R. Havdo, “Mathematical model
of permanent magnets direct current motor”
Computational Problems of Electrical Engineering,
Lviv, no. 1, vol. 5, pp. 33-36, 2015.

[8] I.R.Havdo, "Mathematical model of magnetic state
of permanent magnet DC motor”
Elektroenerhetyczni ta elektromechaniczni systemy,
vol. 1, no. 1. pp. 10-16, 2019. (Ukrainian)
https://science.lpnu.ua > maketno12019zdoil-10-16

[9] 1.R.Havdo, “The magnetic field of a DC motor with
excitation from permanent magnets”,
Elektroenerhetyczni ta elektromechaniczni systemy,
vol. 6, no. 1, pp. 31 — 37, 2023. (Ukrainian)

[L0]M.A. Jatsun, Electric machines: Tutorial. — Lviv:
Vydavnytstvo Natsionalnoho universytetu "Lvivska
politechnika™, 2004.(Ukrainian)

[11]R.V. Filts and N.N. Liabuk, Mathematical modeling
of salient-pole synchronous machines, Lviv: Svit,
1991. (Russian)

MATEMATHUYHA MOJEJIb
NEPEXIJTHUX ITPOIIECIB JIBUT'YHA
MOCTIHMHOI'O CTPYMY 31
3BYI)KEHHSIM BIJI IOCTIMHUX
MATHITIB

Bacuns Mamnsp, Irop 'aBaso

JIBUTYHH TIOCTIHHOTO CTpyMy 31 30yKEHHSIM Bif
moctiiaux  maraiTiB  (ATIC  TIM) BHAcmigoOK  Kpammx
SHEepreTHYHUX  [OKa3HHKIB  MalTh  IepeBary  Hax

KOJICKTOPHUMH [BUT'YHAMH 3 €ICKTPOMATHITHUM 30YIKEHHSIM.
3actocyBanns ans  gocmimkenns JIIC TIM  anamiTHYHHX
METOIB TOTpebye CYTTEBUX
BHUKOPHCTAHHS MOJIBOBUX METO/IB € JOCTATHBO TPYIOMIiCTKHM.

MPUHHATTS CIpOIIEeHb, a
Ha mHam mormsin, 3acTOCyBaHHS METOJIB €JEKTPUYHHX Ta
MarHiTHHUX KiJT Ja€ 3MOTY JTOCSTTH AOCTAaTHBOI IS IHsKeHepHHUX
notpe6 TouHocTi pospaxyHky JIIC IIM. Meroto crarti €
po3pobka MarematndHOi Mozenmi mepexigHux npouecis JIIIC
IIM Ha 6a3i BUKOPUCTAHHS TEOPii ENEKTPUIHUX Ta MAarHITHHX
K. B crarti 3ampomoHoBaHa 3acTymHa cXeMa MarHiTHOTO
xoma JIIIC IIM Ta cucrema piBHsHB, siKa ii omucye. HaBexeHi
piBHsHHs nepexigaux mnpornecie JAIIC IIM Ta amroput™m ix
pO3B’s3aHHS, mepexpbadae  Ha  KOXKHOMY  KpoIi
IHTETpyBaHHS pPO3B’S3aHHSA CHUCTEMH pIBHSHb MAarHiTHOTO
CTaHy. 3ampoloOHOBaHa MaTeMaTHYHA MOJENb HepeXiTHuX
nporneciB JAIIC IIM mosxe OyTH BUKOPUCTaHA LIS aHAI3Y ITHX
MPOLECIB, a TAKOX IiJ] Yac MPOCKTYBaHHS..
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