
COMPUTER DESIGN SYSTEMS. THEORY AND PRACTICE 

Vol. 6, No. 3, 2024 

9 

Andriy Andrushko
1
, Vasyl Tomiuk

2 

1Computer Design Systems Department, Lviv Polytechnic National University, 

12, St. Bandera str., Lviv, Ukraine, Е-mail: andrii.m.andrushko@lpnu.ua, ORCID 0000-0003-4229-7589 
2Computer Design Systems Department, Lviv Polytechnic National University, 

12, St. Bandera str., Lviv, Ukraine, Е-mail: vasyl.v.tomiuk@lpnu.ua, ORCID 0000-0003-4999-7019 

LEVERAGING IOT DATA FOR ACCURATE TEMPERATURE 

FORECASTING IN THE FOOD AND BEVERAGE INDUSTRY  

Received: November 20, 2024 / Revised: November 25, 2024 / Accepted: November 30, 2024 

© Аndrushko А., Tomiuk V., 2024 

https://doi.org/ 

Abstract. In the food and beverage industry, maintaining optimal temperature conditions is 

crucial for ensuring product quality and safety. The advent of the Internet of Things (IoT) has 

enabled real-time temperature monitoring through sensor networks, providing a wealth of data that 

can be harnessed for predictive analytics. This study presents a robust method for analyzing and 

forecasting IoT temperature data, specifically tailored to the operational dynamics of the food and 

beverage sector. By leveraging exponential smoothing techniques and a learning approach, we aim 

to present an algorithm capable of delivering accurate temperature forecasts to support proactive 

decision-making. 

Keywords: IoT, data, temperature forecasting, food and beverage industry, exponential 

smoothing, time series analysis, seasonality. 

Introduction and Problem Statement 

The IoT is an emerging paradigm that aims to unify physical objects through the deployment of 

various network architectures, including ad-hoc networks and the Internet [1]. However, the mere 

application of IoT systems is not enough. To deliver meaningful information to managers, IoT data must 

be properly processed. Enterprises can use data analytics tools to transform a huge volume of sensor-

collected data into valuable insights [2]. Data analytics can help optimize operational processes, forecast 

demand, and enable predictive maintenance of equipment, ensuring minimal downtime and reducing 

maintenance costs [3]. 

The utilization of IoT data to support managers is particularly important in the food and beverage 

industry, as IoT implementation in this industry is a relatively new phenomenon. The future of the 

hospitality management industry is being shaped by the current boom in IoT technology [4]. Moreover, the 

integration of new technologies, particularly those based on IoT, is expected to bring safer, more efficient, 

and sustainable food chains in the near future [5]. 

This article aims to present a robust algorithm for analyzing IoT data and forecasting future events in 

the food and beverage industry to support managerial decisions. By leveraging the unique characteristics of 

IoT data and addressing the specific operational dynamics of the industry, the proposed algorithm can be 

implemented in software systems to provide managers with actionable insights that can enhance 

monitoring, improve efficiency, and ensure better quality control. 

Main Material Presentation  

IoT Data in the Food and Beverage Sector. The hospitality industry encompasses a broad range of 

services, including accommodation, food and beverage, and other services. Within this expansive industry, 

the food and beverage sector represents a substantial component, focused on preparing, presenting, and 
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serving food and beverages to customers either on-premise (at restaurants and hotels) or off-premise 

(through takeaway, restaurant catering services, and food delivery) [6].  

Within the food and beverage industry, IoT data is extremely vital for monitoring and maintaining 

optimal operational conditions. The main variables measured by IoT systems include temperature, 

pressure, humidity, and flow rates [3]. Among these, temperature is especially critical, as it directly relates 

to food safety standards and regulations. Monitoring temperature ensures that perishable goods are stored 

correctly, reducing the risk of spoilage and contamination. Other variables, such as pressure and humidity, 

also play crucial roles in maintaining the quality of food and beverages, as well as contributing to overall 

operational efficiency. 

IoT systems collect and store data as time series, necessitating the use of appropriate forecasting 

approaches to analyze and predict future conditions. The specific system considered in this study involves 

refrigerators used in restaurants, cafes, hotels, and similar establishments where food and beverages are 

stored. These refrigeration systems are designed to maintain temperatures within predefined limits, 

meaning we can assume no long-term trend in the data. Instead, the focus is on detecting and managing 

short-term fluctuations and patterns. 

One significant pattern in the data is daily seasonality, influenced by the operational specifics of the 

food and beverage industry. There are certain day periods when customer demand peaks, such as during 

breakfast, lunch, and dinner times. During these periods, refrigerators are accessed and utilized more 

frequently, which can impact the temperature they maintain. Understanding these daily operational patterns 

is crucial for accurate forecasting and effective management of refrigeration systems. So, the ability to 

forecast temperature fluctuations accurately can help managers in the food and beverage industry make 

informed decisions, optimize their operations, and maintain high standards of quality and safety. 

Metodology – the forecast algorithm. The existence of efficient algorithms for analyzing IoT data is 

an important aspect of IoT big data [7]. Therefore, in the pursuit of a more accurate temperature 

forecasting model for the hospitality sector, we propose a refined algorithm that integrates 

deseasonalization techniques, exponential smoothing and continuous learning approach. 

Exponential smoothing is chosen for this algorithm because it is a more generalized technique that is 

used with discrete time series and does not explicitly account for a trend [8, 9], unlike methods such as the 

decomposition method or regression equations. Given that our data is assumed to have no trend, 

exponential smoothing is particularly suitable for short-term forecasting where the primary focus is on 

capturing recent trends. Accounting for seasonality aligns well with the operational characteristics of 

refrigerators in the industry. Furthermore, testing different time spans allows the algorithm to identify the 

most accurate data segments by considering varying lengths of historical data, enhancing its robustness and 

flexibility. 

The algorithm leverages deep learning techniques, which in this context refers to its ability to adapt 

and learn from data dynamically. This includes testing different smoothing constants to determine the 

optimal balance between recent and older data -- in order to select the right constants for forecasting, 

different values are tried out on past time series, and the ones that minimize an error function like Mean 

Absolute Deviation (MAD) or Mean Squared Error (MSE) are the ones used for forecasting [10]. Also, the 

algorithm uses different time spans of 7-day, 15-day, and 30-day periods, and utilizes a moving window of 

recent data to ensure it remains focused on current trends and behaviors.  

The following steps outline our comprehensive approach: 

1. Preliminary Configuration. 

• Always start with the most recent data available. 

• Choose three different time spans as the base for the forecast: 7-day, 15-day, and 30-day periods. 

The latest day in the dataset should be the end for all these periods. 

• For each time span, perform steps 2-4. 

2. Data Aggregation and Initial Analysis. 

• Aggregate the temperature data into the defined daytime periods: night (12:00 a.m. – 6:00 a.m.), 
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morning (6:00 a.m. – 12:00 p.m.), afternoon (12:00 p.m. – 6:00 p.m.), and evening (6:00 p.m. – 12:00 

a.m.). Calculate the average temperature for each of these periods daily. 

• Analyze the aggregated data for seasonality within each day to identify patterns of fluctuation 

between periods (e.g., night to morning, morning to afternoon, etc.). Plot the data to visualize these 

patterns. 

• Calculate the overall average temperature and seasonal indices for each period (night, morning, 

afternoon, evening) based on the selected time span. 

3. Deseasonalization. 

• If seasonality exists, deseasonalize the data by dividing each record by its appropriate seasonal 

index. If there is no seasonality, simply move to step 4. 

• Use the deseasonalized data for further analysis. 

4. Simultaneous Testing of Time Spans and Smoothing Constants. 

• For each time span (and its respective averages and seasonal indices), apply exponential smoothing 

with four different smoothing constants (α): 0.1, 0.5, 0.7, and 0.9. 

• For each combination of time span and smoothing constant, calculate the mean absolute deviation 

(MAD) and the mean absolute percent error (MAPE). 

• Select the time span and smoothing constant combination that yields the lowest MAD and MAPE. 

5. Develop the Forecast. 

• Base the forecast on the aggregate data from the selected time span. This will provide a general 

point of reference for the next period of six hours. 

• If the forecast was developed with the deseasonalized data, reseasonalize the forecasted values by 

multiplying them by their respective seasonal indices to arrive at the final forecast. 

6. Continuous Updating. 

• Repeat the entire algorithm daily as new data is collected. For example, when data for July 8 is 

available, update the analysis and repeat the testing for the 7-day, 15-day, and 30-day periods ending on 

July 8. This ensures that the method uses the most recent data, and any changes in temperature behavior 

are captured and accounted for in the forecasts. 

Algorithm testing and validation. To verify the validity of the proposed algorithm, we used a real 

dataset of temperature measurements collected via an IoT sensor system. Sensors were installed in 

refrigerators, and the data was collected over three months, from December 11, 2023, to March 15, 2024. 

The complete dataset consisted of 3,737 records. After cleaning the data, the final dataset included 3,267 

records. This final dataset was used to test and validate the forecast algorithm described previously. We 

follow the algorithm and describe each step. 

Results and Discussion  

Preliminary configuration. We tested the algorithm with three moving time windows. This method 

ensures that the analysis or forecast remains relevant by consistently incorporating the most recent data, 

thereby capturing the latest trends and patterns. 

February 15 was chosen as the end date for the first window, February 16 and February 17 for the 

second and third windows, respectively. The real measurements from February 16, 17, and 18 were 

supposed to be used to test tracking signals after the optimal forecast approach is chosen according to the 

algorithm. For each time window, three different forecast bases of 7-day, 15-day, and 30-day time spans 

were identified. The details of each forecast base are shown in Table 1. 

For each time span within every moving window, the data was aggregated based on the assumed 

daily seasonality in the food and beverage industry operations. The temperature measurements within each 

day were aggregated as follows: 

• Night: Measurements from 12:00 a.m. up to (but not including) 6:00 a.m. 

• Morning: Measurements from 6:00 a.m. up to (but not including) 12:00 p.m. 

• Afternoon: Measurements from 12:00 p.m. up to (but not including) 6:00 p.m. 
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• Evening: Measurements from 6:00 p.m. up to (but not including) 12:00 a.m. 

Table 1  

Time spans (forecast bases) for three moving windows. 

Moving Windows 7-Day Time Span 15-Day Time Span 30-Day Time Span 

 Start Date End Date Start Date End Date Start Date End Date 

#1 -- Ending Feb 15  Feb 9  Feb 15  Feb 1  Feb 15  Jan 17  Feb 15 

#2 -- Ending Feb 16  Feb 10  Feb 16  Feb 2  Feb 16  Jan 18  Feb 16 

#3 -- Ending Feb 17  Feb 11  Feb 17  Feb 3  Feb 17  Jan 19  Feb 17 
 

Data Aggregation and Initial Analysis. For each of these periods (night, morning, afternoon, and 

evening), average temperature values were calculated. After these calculations, a new dataset with four 

temperature values for each day was formed.  Next, the overall average temperature and seasonal indices 

for each time span within each moving window were calculated (Table 2).  

Table 2 (a)  

Average temperature and seasonal indices for the Moving Window #1 

 7-Day Time Span 15-Day Time Span 30-Day Time Span 

Season Average S. Index Average S. Index Average S. Index 

night 2.65 0.99 2.12 0.88 2.05 0.89 

morning 2.86 1.07 2.61 1.08 2.46 1.07 

afternoon 2.82 1.06 2.62 1.08 2.54 1.10 

evening 2.35 0.88 2.34 0.96 2.15 0.94 

Overall average 2.67   2.42   2.30   

Table 2 (b)  

Average temperature and seasonal indices for the Moving Window #2 

 7-Day Time Span 15-Day Time Span 30-Day Time Span 

Period Average S. Index Average S. Index Average S. Index 

night 2.48 0.89 2.06 0.82 2.00 0.87 

morning 2.92 1.05 2.75 1.09 2.47 1.07 

afternoon 2.98 1.07 2.79 1.11 2.55 1.11 

evening 2.73 0.98 2.50 0.99 2.19 0.95 

Overall average 2.78   2.53   2.30   

Table 2 (c)  

Average temperature and seasonal indices for the Moving Window #3 

 7-Day Time Span 15-Day Time Span 30-Day Time Span 

Period Average S. Index Average S. Index Average S. Index 

night 2.65 0.94 2.21 0.86 2.06 0.88 

morning 2.95 1.04 2.76 1.08 2.51 1.07 

afternoon 3.03 1.07 2.81 1.09 2.58 1.10 

evening 2.70 0.95 2.49 0.97 2.20 0.94 

Overall average 2.83   2.57   2.34   
 

The analysis of Table 2 reveals consistent seasonality in the temperature data across all moving 

windows and time spans. The morning and afternoon periods typically show higher temperatures, while the 

night and evening periods show lower temperatures. These findings validate the presence of daily 

seasonality, indicating that the next steps should involve data deseasonalization to remove these patterns. 

This process will allow the forecast algorithm to focus on other underlying trends and provide more 
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accurate predictions. 

Testing time spans and smoothing constants. After the data was deseasonalized, we applied 

exponential smoothing to identify the time span that yields the lowest mean absolute deviation (MAD) and 

mean absolute percent error (MAPE). Exponential smoothing was applied to each time span using four 

different smoothing constants (𝛼): 0.1, 0.5, 0.7, and 0.9. These constants were chosen to observe the impact 

of different weights on the previous time periods. 

For each combination of time span and smoothing constant, MADs and MAPEs were calculated. 

The results are shown in Table 3. 

Table 3 

MADs and MAPEs for all time spans and moving windows 

Moving  Accuracy TIME SPANS 

Window Measures 7-Day 15-Day 30-Day 

Smoothing  

constants α = 0.1 α = 0.5 α = 0.7 α = 0.9 α = 0.1 α = 0.5 α = 0.7 α = 0.9 α = 0.1 α = 0.5 α = 0.7 α = 0.9 

#1 -- 

Ending 

Feb 15 

MAD 0.7622 0.5961 0.5708 0.5795 0.7848 0.7531 0.7358 0.6902 0.663 0.6023 0.6428 0.6133 

MAPE 

45.72

% 

40.60

% 

38.52

% 37.52% 96.80% 95.00% 85.98% 75.67% 

99.27

% 

80.27

% 

89.02

% 82.00% 

#2 -- 

Ending 

Feb 16 

MAD 0.6787 0.6755 0.6273 0.5663 0.8156 0.8103 0.7836 0.7272 0.6914 0.6853 0.6702 0.6322 

MAPE 

55.79

% 

47.33

% 

41.26

% 35.06% 94.74% 92.35% 82.27% 70.32% 

102.80

% 

97.57

% 

91.02

% 83.18% 

#3 -- 

Ending 

Feb 17 

MAD 0.6941 0.6451 0.5947 0.5407 0.7758 0.7478 0.7241 0.6705 0.7197 0.6825 0.6645 0.6284 

MAPE 

59.83

% 

46.28

% 

40.12

% 34.23% 92.52% 89.28% 79.30% 67.37% 

105.45

% 

97.05

% 

90.38

% 82.68% 

 

For Moving Window #1, the combination of a 7-day time span and a smoothing constant of 0.7 

produced the lowest MAD, indicating the best accuracy. This suggests that a shorter, recent data-focused 

approach with a moderate weight on the most recent data is effective in this context.  

For Moving Window #2, a similar trend is observed with the 7-day time span and a smoothing 

constant of 0.9 yielding the lowest MAD and MAPE. This consistency across different windows further 

supports the reliability of these combinations for accurate forecasting. 

For Moving Window #3, once again, the 7-day time span with a smoothing constant of 0.9 resulted 

in the lowest MAD and MAPE. This recurring pattern across all windows suggests that the 7-day time span 

with a high weighting on recent data is the optimal choice for the given dataset. 

Forecast development and signals tracking. Tracking signals are critical in validating forecasts by 

measuring the cumulative forecast error over time and comparing it to acceptable limits. This helps to 

identify if the forecast remains within a tolerable range or if adjustments are needed. The tracking signal is 

calculated by dividing the running sum of forecast errors (RSFE) by the mean absolute deviation (MAD). 

Typically, tracking signals are set to be within ±3 MADs, as this is a common threshold used to detect 

significant deviations in forecasting. 

The results of the forecast development and validation using tracking signals are summarized in 

Table 4. 

The tracking signals indicate that the forecast for Moving Window #1 exceeds the acceptable range 

of ±3 MADs, suggesting possible issues with the forecast for this period. However, this discrepancy can be 

attributed to the abnormal temperature values observed on February 15 (“0.48” is far below the 

temperature ranges the system should maintain). Since the moving window #1 embraces the first four 

periods in our forecast, the rest of the periods also exhibit tracking signals that are out of the acceptable 

range. To further analyze the robustness of the forecast algorithm, we exclude the first window and focus 

on forecasts for February 17 and February 18, as shown in Table 5. 
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Table 4 

Forecasts and Tracking Signals for February 16, February 17, and February 18 

Moving  Season Time  Forecast  Actual Error RSFE Absolute Cum. MAD Tracking 

Window  period value value   error error  signal 

#1 -- 

Ending 

Feb 15 

night 1 1.01 0.48 -0.53 -0.53 0.53 0.53 0.53 -1.0 

morning 2 0.68 2.57 1.88 1.35 1.88 2.41 1.21 +1.1 

afternoon 3 1.98 3.31 1.33 2.68 1.33 3.74 1.25 +2.1 

evening 4 2.43 3.44 1.02 3.70 1.02 4.76 1.19 +3.1 

#2 -- 

Ending 

Feb 16 

night 5 3.08 3.42 0.34 4.03 0.34 5.10 1.02 +4.0 

morning 6 3.98 3.04 -0.94 3.09 0.94 6.04 1.01 +3.1 

afternoon 7 3.20 3.52 0.33 3.42 0.33 6.36 0.91 +3.8 

evening 8 3.20 3.21 0.01 3.42 0.01 6.37 0.80 +4.3 

#3 -- 

Ending 

Feb 17 

night 9 3.14 2.53 -0.61 2.81 0.61 6.98 0.78 +3.6 

morning 10 2.59 3.36 0.77 3.58 0.77 7.75 0.78 +4.6 

afternoon 11 2.98 3.47 0.49 4.07 0.49 8.24 0.75 +5.4 

evening 12 3.03 3.41 0.38 4.45 0.38 8.62 0.72 +6.2 

Table 5 

Forecasts and Tracking Signals for February 17 and February 18 

Moving  Season Time  Forecast  Actual Error RSFE Absolute Cum. MAD Tracking 

Window  period value value   error error  signal 

#2 -- 

Ending 

Feb 16 

night 1 3.08 3.42 0.34 0.34 0.34 0.34 0.34 +1.0 

morning 2 3.98 3.04 -0.94 -0.60 0.94 1.28 0.64 -0.9 

afternoon 3 3.20 3.52 0.33 -0.28 0.33 1.60 0.53 -0.5 

evening 4 3.20 3.21 0.01 -0.27 0.01 1.61 0.40 -0.7 

#3 -- 

Ending 

Feb 17 

night 5 3.14 2.53 -0.61 -0.89 0.61 2.22 0.44 -2.0 

morning 6 2.59 3.36 0.77 -0.12 0.77 2.99 0.50 -0.2 

afternoon 7 2.98 3.47 0.49 0.37 0.49 3.48 0.50 +0.7 

evening 8 3.03 3.41 0.38 0.75 0.38 3.86 0.48 +1.6 

By excluding the first window and focusing on the forecasts for February 17 and February 18, it can 

be seen that the tracking signals stay within the acceptable range of ±3 MADs. This indicates that the 

algorithm performs well when accounting for typical temperature variations, and deviations observed in 

Moving Window #1 are likely due to specific anomalies on February 15. 

Overall, the results affirm that the forecasting algorithm, with the chosen time spans and smoothing 

constants, provides reliable forecasts. However, the presence of anomalies must be considered, and 

continuous monitoring with tracking signals is essential to maintain forecast accuracy. 

Conclusions 

In the food and beverage sector, IoT systems have become increasingly vital, providing real-time 

monitoring and management capabilities that enhance operational efficiency, ensure quality control, and 

support compliance with stringent food safety regulations. Today, many restaurant businesses invest in 

smart technologies to differentiate from competitors, deliver better service, and provide a good customer 

experience [11], therefore the role of sophisticated forecasting tools becomes increasingly important. 

However, analysis of data without generating value offers no contribution to an organization, 

regardless of whether data are big or small [12]. So, in this article we aimed to present a robust method for 
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IoT data analysis and forecasting that is specifically designed for the food and beverage industry. By 

leveraging the unique characteristics of IoT data and addressing the industry's specific operational 

dynamics, this method seeks to provide managers with actionable insights and improve overall operational 

efficiency.  

After presenting the algorithm, we demonstrated its application using a real-life dataset. The data 

was first aggregated based on daily seasonality, dividing each day into four distinct periods: night, 

morning, afternoon, and evening. Deseasonalization of the data was performed to remove inherent seasonal 

patterns, followed by the application of exponential smoothing to identify optimal smoothing constants. 

Additionally, learning approach was employed to find the data time spans that yield the most accurate 

forecast. The results of calculations on this particular dataset showed that greater smoothing constants of 

0.7 and 0.9, and shorter time spans (7-day) produced more accurate forecasts. The tracking signal analysis, 

using a threshold of ±3 MADs, was instrumental in validating the accuracy of the forecasts.  

Looking ahead, further research should explore other forecasting methods, such as the moving 

average and weighted moving average, to compare their effectiveness against the exponential smoothing 

approach. Also, the integration of advanced machine learning and AI techniques holds significant potential 

for enhancing forecasting accuracy and efficiency. By focusing on the described algorithm and its practical 

application, organizations in the food and beverage industry can achieve better forecast accuracy, 

ultimately leading to improved operational efficiency and customer satisfaction. 
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Анотація. У секторі громадського харчуваня підтримка оптимальних температурних умов має 

вирішальне значення для забезпечення якості та безпеки продукції. Поява Інтернету речей (IoT) зробила 

можливим моніторинг температури в режимі реального часу за допомогою сенсорних мереж, надаючи велику 

кількість даних, які можна використовувати для прогнозної аналітики. У цьому дослідженні представлено 

метод аналізу даних ІоТ та прогнозування температури на основі цих даних. Метод спеціально адаптований 

до специфіки операційної динаміки сектору громадського харчуваня. Використовуючи експоненційне 

згладжування у поєднанні із елементами машинного навчання, у статі представлено алгоритм, здатний 

надавати точні прогнози температури для підтримки проактивного прийняття рішень. 

Ключові слова: IoT, дані, прогноз температури, сектор громадського харчуваня, експоненційне 

згладжування, аналіз часових рядів, сезонність. 

 

 


