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Abstract. This study explores the process of design and optimization of exoskeleton for lower
extremities using methods of generative design. Due to the unique characteristics and features of the
human body, every exoskeleton needs to be adjusted to the working condition of each user, but the
development of individual product designs by engineers is highly expensive and takes a lot of time.
The study objective is the optimization of the base model of the exoskeleton to working conditions
using generative design technology. Optimization is based on human movements and biomechanics,
especially on joint torque, which allows to design of construction with acceptable safety factors.
Results show highly optimized designs for different materials and a significant reduction in mass
and volume relative to the base model. Usage of such technologies saves development time,
allowing engineers to focus on more complex aspects of design.

Keywords: exoskeleton, generative design, biomechanics, design, torque, topological
optimization.

Introduction

Considering the increasing interest in enhancing human abilities with the help of robotic platforms
and exoskeletons, there is a need to use technologies that will allow designing products for the individual
characteristics of the user. The interest lies both in increasing the physical strength and endurance of a
person when performing loads and in reducing the impact of these same loads on the human body. This
will allow the use of exoskeletons of various types to solve such problems as rehabilitation measures after
injuries and operations, facilitating movement in diseases of the musculoskeletal system, and support in
performing movements and heavy work [1-7].

Significant results have been achieved in this field and many models of exoskeletons for various
tasks have been presented, however, these projects have the disadvantage of high manufacturing cost and
with the individual characteristics of the user, they can have an even higher cost [1-4, 7, 8].

An exoskeleton is an external device for a part of the body to perform a certain function, which
facilitates the performance of tasks by this part of the body. Such devices make it possible to maintain,
reduce the load, or even strengthen certain human capabilities. Currently, two main groups of exoskeletons
can be distinguished: exoskeletons of passive and active type [4, 6, 8, 9].

The passive type of exoskeletons is used for support during exercises but without the use of active-
type elements (electric motors, servo drives). They use mechanical elements (springs, levers) to support,
distribute weight, and reduce the load on muscles and joints. This type of exoskeleton is much lighter and
easier to manufacture and operate and does not require power sources. They are used to support the body
and reduce loads on the musculoskeletal system, using the mechanical properties of materials and
mechanisms [7, 10, 11].
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Active-type exoskeletons are used not only for support and relief but also to create additional
strength for the user. They use electric motors, servo drives, and pneumatic systems in combination with
computing and software complexes to control the operation of devices. They are more comfortable and
adaptive to the person, and the software allows you to repeat the user's movements with the appropriate
accuracy. However, such devices require appropriate power sources and a design that allows the active
elements to be attached to the frame [3, 5, 12, 9].

Exoskeletons are used in medicine, as a means of recovery, support, and rehabilitation after injuries
in patients, and industry, as injury prevention and reducing the burden on workers when performing heavy
and long-term work. Also, exoskeletons are actively trying to be integrated into military affairs, improving
the physical qualities of a soldier, taking into account strength, endurance, or the ability to carry an
additional load [1-7, 12].

Regardless of the type of exoskeleton, its basic part is the frame, which should be sufficiently
ergonomic and user-friendly. The process of designing exoskeletons must include optimization of the
resulting structures for the individual characteristics of the person who will use this device. For this
purpose, anthropometric data of the user's body, anatomy of the human body, and biomechanics of
movements are taken into account and included in development. Otherwise, non-compliance with the
parameters will cause inconvenience to the user, which may lead to injury [12, 13].

Construction creation and optimization technologies using generative design methods can be applied
for simplification of the design process. Generative design uses main parameters, that relate to the design
of the product, but their correct definition and understanding of product working conditions and the studied
parameters should be evaluated at the beginning. However, the correct study of the interaction of the
exoskeleton structure with the user, its compliance with the loads and conditions of use, and the location
and movement of the structural elements rest on the engineer [14-16].

Generative design allows you to design objects that are optimized even before the stage of
submission to production. Thanks to this technology, construction development includes work conditions,
material properties, loads, and topological optimization at the starting stage of the project. When creating a
prototype, the technology allows you to reduce the volume or weight of the product without losing its
properties. If changes are necessary, the engineer defines new constraints and generates a new prototype,
that meets the new conditions [14-17].

Generative design can use base models for generation or build models from scratch. The technology
makes it possible to generate a finished product under given restrictions, while generative design creates
several variants of the product under specified conditions for one model. The generation process takes into
account the materials and the process of manufacturing the product with the appropriate equipment, such
as 3D printing with plastic filament from different materials [14-17].

In this study, the optimization process of the basic 3D model of the exoskeleton for the lower limbs
was considered. For this, the basic model, its creation, and compliance with the basic human parameters
were investigated. The model is a continuous frame with predetermined places for fixing the main joints
and elements on this frame. The proposed product has 6 degrees of freedom for the leg, which includes
mechanisms corresponding to the joints of the leg. This work explores the potential of using generative
design technologies to optimize mass from a solid initial design under loads resulting from standard
exercises and various materials used in 3D printing.

Problem Statement

Evaluation of the biomechanics of the lower limbs is an important part of gathering information for
the design of ergonomic exoskeletons for this part of the body. For this, it was necessary to determine the
anatomical and biomechanical features of the limbs themselves, which include the anthropometric
parameters of the leg, the properties and mechanics of the joints and muscles, the possibility of attaching
the frame to the limb, and workloads that will affect the.

Anthropometric indicators are divided into 2 groups: general indicators and indicators for the lower
extremities. General indicators include a person's height, weight, and mass index, from which indicators
for the lower extremities can be determined individually. Indicators for the lower limbs are: leg length;
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thigh, leg, foot length; hip and lower leg girths; knee, ankle, heel height; foot width and toe length; hip,
knee, and ankle angles. These data were used to determine the dimensions of the basic 3D model of the
exoskeleton [3, 18-22].

The properties and mechanics of the joints and muscles are necessary to define the freedom of
movement of the basic 3D model of the exoskeleton. The lower limb consists of 3 joints (femoral (hip),
knee, ankle), which form 6 degrees of freedom of movement. The hip joint is a ball-and-socket joint that is
actuated by the thigh muscles, allowing movement in 3 planes. The knee and ankle joints are simple hinge
joints that, in conjunction with the appropriate muscle groups, allow movement in 1 plane of motion and
little movement in others. Thus, the basic model of the exoskeleton should have appropriate mechanical
joints [18-24]. Examples of joints are presented in Fig. 1.
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Fig. 1. Types of joints and their mechanical models. Source: https://nurseslabs.com/skeletal-system/

Attachments are individual devices for creating interaction between the structure and the limb. Their
position is regulated by the possibility of attaching to the frame and, accordingly, transferring the load to
this frame. Because of this, the base model must have reserved positions for mounting those attachments.

Working loads are specified loads during standard movements and exercises. Standard exercises
include walking, running, climbing/descending stairs, squats, etc. They are measured as a percentage of
body weight. From these data, the loads at the corresponding moments of movement are determined, which
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will allow to collection of the necessary restrictions [19, 21, 22, 23-26]. The percentage ratio of load to
body weight for the respective joints is presented in Table 1.

Table 1.
Characteristics of loads during exercises relative to body weight (BW)
Exercise Hip joint, % BW | Knee joint, % BW Ankle joint, % BW

Walk 100-250 150-250 120

Run 200-300 200-300 275
Rise from a sitting position 30-50 200-300 200-300
Stairs ascending 200-300 200-300 200-300
Stairs descending 150-250 250-350 150-200

According to the data determined in the previous subsection, a 3D model of the exoskeleton is
formed, as well as taking into account the method of manufacturing the product using 3D printing. This
means that each part is designed to be printed on the corresponding printer, namely for printers with a
printing area of 200x200x250 mm.

The model is solid elements that cover the leg according to anthropometric indicators. The elements
are organized into larger assemblies according to the parts of the leg and form the corresponding joints. All
elements are connected. The former model is shown in Fig. 2-3.

Faze

a) b)
a) b)
Fig. 2. Basic solid 3D exoskeleton model. Fig.3. The basic solid 3D model of the exoskeleton with
a) — side view, b) — isometric view. the position of the leg in the exoskeleton:

a) — side view, b) — front view.

The basic 3D model is designed in the educational version of Autodesk Inventor 2023 by the defined
parameters and dependencies between elements. The model consists of 4 parts: a pelvic attachment with a
hip joint, a thigh structure, a lower leg structure, and a foot structure.

Optimizing the mass of the exoskeleton structure of the lower limbs is critical to ensure the
efficiency and comfort of using these devices. Reducing the weight without losing the rigidity and stability
of the structure allows to reduce the burden on the user, which is especially important for people who need
assistance in movement, such as trauma patients or the elderly. Analysis of the torque that occurs during
movement allows you to identify optimal solutions for the location of components that affect the balance
and maneuverability of the exoskeleton. This, in turn, leads to the creation of lighter, but strong structures
that provide the necessary support.

In addition, the use of modern materials and modeling technologies allows to achieve an optimal
ratio between strength and weight. Topological optimization and computer simulation of motion
mechanics, which uses generative design, provide the possibility of detailed analysis of loads and structural
elements. This helps reduce material redundancy, which in turn increases the efficiency of the exoskeleton.
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a) b)
a)
Fig. 4. 3D model of the exoskeleton in the environment:  Fig. 5. 3D exoskeleton model in an environment without
a) — side view, b) — front view. a starting form: a) — side view, b) — front view.

To carry out design optimization, it is necessary to determine the initial conditions, materials, and
limitations for the specified model. This includes determining the initial shape, determining the parts to be
preserved, determining the inaccessible areas, determining the initial conditions, determining the load,
determining the materials, and determining the manufacturing method. Preparation for the experiment is
shown in Fig. 4-5. The starting shape is marked in yellow, forbidden zones in red, protected zones in green,
and blue arrows - directions of torques.

Results and Discussion

The basic model was designed in the Autodesk Inventor 2023 CAD environment. PET plastic from
the Autodesk material library served as the main material for the basic model. A complete model with a
mass of 23.25 kilograms and a volume of 14913430 mm?® was obtained, which is shown in Fig. 6. The
resulting model was optimized using a generative design. Generative design simulations were performed in
the Autodesk Fusion 360 environment, which allowed the integration of both programs to simplify the
simulation of the experiment.

Since the Autodesk Fusion 360 environment does not support generation for assemblies, the model
was cast to the body of a solid structure. The experiment consisted of 5 simulations, one for each material.
The table of results is presented in Table 2. The same conditions and loads are assigned to each simulation.
5 optimization results were obtained from the selected materials. An example of simulation results is
shown in Fig. 7, and an example of simulation characteristics is shown in Fig 8.
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Fig. 6. Physical characteristics of the base model.
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Fig. 7. The resulting 3D model of the exoskeleton after
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Fig. 8. Characteristics of the obtained 3D exoskeleton

optimization. model after optimization.
Table 2
Construction generation results
Experiment Ne Material Volume, e*® mm® Mass, kr Suitability, %
1 ABS 4,513 4,783 66,194
2 PAEK 4,549 6,004 35,82
3 Heiinon 4,524 5,067 85,491
4 PC/ABS 4,524 4,976 87,178
5 PET 4,579 7,056 45,947
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Figure 10. Structure efficiency relative to mass of the structure.

As a result, a set of optimized structures was obtained, which will allow the engineer to choose a
suitable structure that fully meets the requirements of its use. The set is characterized by 5 materials and
manufacturing technology using 3D printing. Industrial plastics are used as a selection of materials,
namely: ABS, PC/ABS, PAEK, PET, and nylon.

The study showed a decrease in the mass of the structure from 3 (PET plastic) to 5 (PC/ABS plastic)
times, and the volume by 3 times, relative to the initial characteristics. The results are given in the relative
efficiency of the obtained models in Figures 9-10 and determined by mass and volume.

Conclusions

Exoskeletons are innovative technologies that significantly improve the mobility and physical
support of users, especially in the medical and industrial fields. They provide support for the lower limbs,
reducing the load on joints and muscles, which is important for rehabilitation and increasing work
productivity.

Generative design, due to its ability to automatically generate optimized shapes based on given
parameters and constraints, is becoming a powerful tool in designing exoskeletons. It allows for the
creation of light and strong structures that take into account the mechanics of movement and loading,
which increases the overall efficiency and functionality of devices. Using generative design promotes
innovation by reducing development time and allowing engineers to focus on more complex aspects of
design.

During the study, computer modeling of the basic model of the exoskeleton was carried out.
Anthropometric, anatomical, and biomechanical features of the lower extremity were collected and
included in the design. The optimization of the base model was carried out under the specified conditions
and limitations using generative design, which showed a significant reduction in the mass and volume of
the final model compared to the base model.

The obtained results show a significant reduction in mass relative to the base model by 3-5 times
(depending on the material) and a reduction in volume by 3 times. It also allows you to identify the weak
points of the design and correct inaccuracies even in the basic model.
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AHoTanisgs. B cTarTi m0CHiKyeThCs IMPOIEC MPOSKTYBAaHHS Ta ONTUMI3Alliil €K30CKeNeTy HHIKHIX
KIiHI[IBOK 32 JIOTIOMOTOI0 METOJIIB TEHEPATUBHOTO Ju3aiiHy. Yepe3 yHIKaNbHI XapaKTEpPUCTUKH Ta 0COOIMBOCTI
JOICHKOTO Tijla KOJKEH €K30CKeNeT MOTPiOHO HANAITOBYBATH IIiJl YMOBH POOOTH KOKHOTO KOPHCTYyBada, aje
po3podKa imKeHepaMH iHAWBIAYaTbHOTO AW3alHY MPOAYKTY KOIITYE Iy>Ke JOPOTo Ta 3aiiMae 0arato Jacy.
MeTor0 IOCTIIKEHHS € ONTUMI3allis 6a30B0O1 MOJEIi eK30CKeNIeTa 10 YMOB pOOOTH 3a JOTIOMOTOI0 TEXHOJIOT1
TeHepaTUBHOTO MpoeKkTyBaHHS. OmnTuMizariisi 0a3yeTsCs Ha pyxax JIOJUHM Ta OiOMEXaHili, OCOONMBO Ha
CyrJI000BOMY MOMEHTI, IO J03BOJISIE MPOCKTYBATH KOHCTPYKIIO 3 MPUHHITHUMU KOe(]illieHTaMU Oe3MeKu.
PesynpraTi IEMOHCTPYIOTH BUCOKOONITUMI30BaHY KOHCTPYKITIO JJISl Pi3HUX MaTepiaiiB i 3HAUHE 3MEHIICHHS
MacH i1 00’eMy MOPIBHSAHO 3 6a30BOI0 MOJEIUTIO. BUKOPHCTaHHS TaKUX TEXHOJIOTiH EKOHOMHTD Yac pPO3pOOKH,
JIO3BOJISTIOYH 1H)KEHEepaM 30CEPeIUTUCS Ha OIIBII CKIIAJHAX aCIEKTaX MPOSKTYBaHHS.

Kuro4oBi cjioBa: ex30cKeneT, TeHepaTUBHAN Jn3aifH, OioMexaHika, MPOSKTYBaHHS, KPYTHHH MOMEHT,
TOITOJIOTIYHA OITTHUMI3aIlisl.
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