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Sunlight has served as the primary energy source since the inception of life on Earth.
Despite the emergence of alternative energy sources like fossil and nuclear energy, solar
energy remains the most environmentally friendly and cost-effective option. Harnessing
this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive
research is dedicated to PV modules, with a primary emphasis on electrical modeling,
which plays a crucial role in effectively controlling a PV system and determining its I-V
characteristics. PV modules encompass various electrical models, including the single-
diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The
difficulty lies in precisely determining the unknown parameters associated with each model.
This study sets out with a clear objective: to tackle the challenge of identifying the
elusive parameters within the SDM. The primary aim is to compare the effectiveness of
three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-
Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying
these unknown parameters. In practical terms, this study extends to the evaluation of these
algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar
Power TP240 module, and RTC France solar cell. The evaluation of results is based on
the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates
superior performance, achieving the lowest RMSE of 9.860218e-04 A for the RT'C France
solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the
TP240 module.

Keywords: solar energy; PV modeling; parameter estimation; metaheuristics algorithms.
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1. Introduction

In contemporary times, climate change has emerged as a global concern primarily attributed to the
emission of greenhouse gases, with carbon dioxide (CO3) identified as the predominant contributor [1,2].
The combustion of fossil fuels such as coal, oil, and natural gas in various sectors, including electricity
production, transportation, and industrial activities, is a significant source of COy emissions. The
global shift towards renewable energy sources, such as solar power, is gaining momentum as a crucial
step in mitigating CO9 emissions and combating climate change. A noteworthy example is Morocco,
where, as per statistics from the Ministry of Energy Transition and Sustainable Development, the
installed solar power capacity reached 830 MW in 2022 [3|. This capacity is further divided into
thermal and photovoltaic energy sources [4], reflecting a substantial commitment to sustainable energy
practices. This work primarily focuses on photovoltaic energy, with a specific emphasis on its electrical
modeling [5]. It plays a pivotal role in the installation of a PV system, encompassing energy prediction
and control. Moreover, it serves as the foundation for various research fields within PV energy, including

(© 2025 Lviv Polytechnic National University 1
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PV thermal modeling [6] and maximum power point tracking (MPPT) [7]. Numerous electrical models
exist in literature, including the single-diode model (SDM), double-diode model (DDM), and PV
module model (MM). Notably, the SDM and MM emerge as the most extensively utilized models.
Figure 1 illustrates the corresponding equivalent circuits for these prominent models.

PV Cell PV Module
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Fig. 1. The electrical circuits: (a) of SDM and (b) of MM.
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The distinction between SDM and MM lies in the inclusion of the number of cells connected in series
and parallel in the latter. The MM represents a comprehensive modeling approach for a PV module,
while SDM is specifically designed for a PV cell. Both models share five unidentified parameters:
the light-generated current I,, the reverse saturation current Ip, the series resistance R, the shunt
resistance Rgp, and the diode ideality factor a. The characteristic equations for SDM and MM are
articulated in (1) and (2), respectively,

s i

(1)
a(VNp+RsINs) V' N, R.IN.
S S

The main challenge revolves around precisely identifying the model’s unknown parameters. The
methods employed for parameter determination can be broadly classified into three categories: analyt-
ical, numerical, and metaheuristic approaches [8,9]. Analytical methods are typically straightforward
and simple to implement [10]. They often involve several mathematical operations that do not require
iterative processes. However, its functionality relies heavily on the module’s data-sheet, limiting its
operation to standard test conditions (STCs). On the other side, numerical approaches involve creating
equations that can be resolved through numerical or iterative methodologies [11|. Some approaches
integrate both analytical and numerical methods to determine PV parameters [12,13].

Metaheuristic methods can be employed across a spectrum of problems to discover approximate
solutions that optimize a specified objective function [14]. Examples include the Genetic algorithm
(GA) [15], utilizing the inherent principle of survival of the fittest, the differential evolution (DE) [16],
the flower pollination algorithm (FPA) [17], the teaching-learning-based optimization (TLBO) [18],
and the honey badger algorithm (HBA) [19]. Many other metaheuristic algorithms draw inspiration
from natural phenomena, mirroring the behaviors of swarms and animals engaged in food searching.

The objective of this research is to assess the effectiveness of three metaheuristic algorithms FPA,
TLBO, and HBA in determining the parameters of photovoltaic models (SDM and MM). These algo-
rithms aim to optimize the Root Mean Square Error (RMSE) as the objective function, with the goal
of estimating PV parameters by minimizing the error between estimated and experimental currents,
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X is the unknown parameters vector, N is the number of measured data, and g(X) is the difference
between the estimated and experimental current for the SDM and MM display in (4) and (5);

a(V+X31) X3l
gSDM(X) — Xl — X2 |:eq )(5167:"3 _ 1:| _ ‘/_“‘_X_i‘? _ [exp7 (4)
4

q(VNp+X3INs) V' N. XaIN.
gum(X) = X1N, — XoN,, |e XehTNaNp 1| ——£r > ° + A3
X4Ns

The upcoming sections of this paper are arranged as follows: in the second section, we will introduce
the three metaheuristic algorithms, followed by a thorough evaluation and comparison of their precision
in estimating PV model parameters across three modules and cells. The concluding section provides a
summary of the results and outlines the conclusions derived from the study.

— Texp- (5)

2. Metaheuristic algorithms

Metaheuristic algorithms are designed to work with a suite of heuristics or problem-solving strategies.
These high-level strategies are engineered to discover approximate solutions for intricate optimization
problems by navigating the solution space intelligently and in a guided manner. Many metaheuristic
algorithms draw inspiration from nature, human society, or artificial phenomena [20)].

2.1. Flower pollination algorithm (FPA)

The fundamental concept underlying the flower pollination algorithm (FPA) involves emulating the
natural process of flower pollination to address intricate optimization problems [17]. This emulation is
guided by four rules that encapsulate the key characteristics of the pollination process:

— Global pollination processes involve biotic and cross-pollination, with pollinators executing Levy
flights while carrying pollen.

— Abiotic and self-pollination fall under the category of local pollination.

— Flower constancy is defined as the likelihood of reproduction, directly linked to the similarity
between two flowers.

— A switch parameter, represented as p € [0,1], regulates the occurrence of both local and global
pollination processes. The influence of local pollination, constituting a significant fraction p of the
overall pollination activity, is affected by factors like the wind.

Within the realm of global pollination, pollen can traverse extensive distances, aided by the sub-
stantial mobility of flying insects capable of covering considerable geographic ranges. This phenomenon
can be mathematically articulated by the following equation:

X{t = Xt + L(X] = g0). (6)
During iteration ¢, the representation of pollen for type i is Xf, and the optimal solution among
all solutions discovered in the present generation is symbolized as g.. The intensity of pollination,
encapsulated by the parameter L, can be expressed using the Levy distribution,
AT(A) sin ”—2>‘ 1

L ATURE L "

In numerous optimization problems, the conventional gamma function I'()) is utilized with a value of
A= 1.5.
The second rule, pertaining to local pollination, can be mathematically represented as follows,
X = X[+ e(X] — Xp). ()

Most flowers have the capacity for both local and global pollination. To facilitate this, a switch
probability denoted as p (Rule 4) is employed to transition between global and local pollination. In
the context of many optimization problems, a value of p = 0.8 often yields superior performance.
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Algorithm 1 Flower Pollination Algorithm (FPA)
Set initial parameters p € [0, 1]
Generate initial population of flowers
Find the current best solution g,
Start
while (stopping criterion not satisfied) do
for each flower do
if rand() < p then
Global pollination Eq. (6)
else
Select two random solutions Xj’f and X}
Local pollination Eq. (8)
Keep the current best solution

End FPA

2.2. Teaching-Learning-Based Optimization (TLBO)

The TLBO algorithm is an optimization technique inspired by the dynamics of teaching and learning
observed in human society. It consists of two primary phases: the teaching phase and the learning
phase [18]. During the teaching phase, the algorithm pinpoints the optimal solution within the pop-
ulation and labels it as the teacher Xieacher- Subsequently, the other solutions in the population are
revised by assimilating the information imparted by the teacher, aiming to enhance their performance
as students,

Xi,new = Xz + rand(Xteacher - TFXmean)a (9)
1 P

Ximean = — X;. 10

g Z; (10)

Considering a population of size P, where each member is represented as X;, and denoting the
updated version of learner X; as X; new. The average solution within the population is denoted by
Xmean. The teaching factor T, determining the magnitude of change in the mean level, is introduced.
Specifically, Tr is computed by rounding up the sum of 1 and a randomly generated number within
the range of 0 to 1, expressed as T = round(1 4 rand(0,1)).

Algorithm 2 Teaching-Learning-Based Optimization (TLBO)
Generate initial population
Start
while (stopping criterion not satisfied) do
Calculate the Xyean Eq. (10)
Select the best solution Xieacher
Teacher phase
for each learner do
Generate X; new Eq. (9)
if f(Xi,now) < f(XZ) then
Xi = Xi,new
Learner phase
for each learner do
Select a random learner X; (j # 1)
Generate X new Eq. (11)
if f(Xi,new) < f(Xz) then

Xi = Xi,now
Keep the current best solution
End TLBO
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In the learning phase, learners engage in skill enhancement by randomly selecting peers for group
discussions and formal communication. The learning process for each individual can be articulated as
follows:

B XZ + rand(XZ — XJ) if f(Xz) < f(Xj), (11)
X+ rand(X; — X;) otherwise,

where f(X;) and f(X;) represent the objective function values of X; and X;, respectively.

2.3. Honey Badger Algorithm (HBA)

HBA takes inspiration from the foraging behavior of the honey badger, a creature renowned for its
aggression and tenacity [19]. Emulating the honey badger’s approach, the algorithm incorporates
elements such as utilizing its keen sense of smell to locate food sources, adept digging for underground
resources, and the ability to follow the honey-guide bird to discover beehives. The primary goal of the
algorithm is to mirror the honey badger’s efficiency in locating food sources, applying this concept to
optimization problems for finding the optimal solution. The HBA comprises two distinct phases: the
digging phase and the honey phase. During the digging phase, the HBA emulates the search behavior
of a honey badger,

Xnew = Xprey + FBLi Xprey + Friad; [cos(27rr2)(1 — cos(27rr3))], (12)
(X; — Xi41)?
I = gy i) 13
T4 47Td12 ( )
—t
a = Cexp (14)

where C' is a constant (C' = 2) and tyax is the maximum iteration.

Algorithm 3 Honey Badger Algorithm (HBA)
Generate initial population
Evaluate the fitness f; for each X;
Save best position Xpey and assign fitness to fprey
Start
while (stopping criterion not satisfied) do
Update the decreasing factor o Eq. (14)
for each honey badger position do
Calculate the intensity I; Eq. (13)
if »r < 0.5 then
Update the position Xpew Eq. (12)
else
Update the position Xpew Eq. (15)
Evaluate new position and assign to frew
if fnew < fz then
Set X; = Xpew and f; = frew
if foew < fprey then
Set Xprey = Xnew and fprey = fnew
Keep the current best solution

End HBA

Within the framework of honey badger foraging behavior, the following variables are established:
Xprey signifies the prey’s position, denoting the optimal location for food acquisition. The honey bad-
ger’s prowess in gathering food is denoted by 5 > 1. The distance between the prey and the ith honey
badger is expressed as d; = Xy — X;. The prey’s intensity, denoted by I;, is influenced by both the
prey’s concentration and the distance between it and the ¢th honey badger. The parameter o governs
the density factor, ensuring a smooth and time-varying transition from exploration to exploitation.
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Values for rq, 79, 73, and 74 are random numbers generated within the range of 0 to 1. The flag F
controls the search direction and can assume either the value of 1 or —1.
The mathematical representation of the scenario in which a honey badger follows a honey-guide
bird to find a beehive during the honey phase can be expressed by the following equation,
Xnew = Aprey + FTSth

r5 denote a random variable uniformly distributed over the unit interval [0, 1].

(15)

3. Results and discussions

The three algorithms are employed to extract the PV parameters from three distinct PV modules
and cells. In this research field, the RTC France solar cell and the Photowatt PWP201 module are
extensively employed in PV characterisation, their experimental data collected at temperatures of T' =
33°C and T = 45°C, respectively [21]. Another module is the Tata Solar Power TP240 module, which
consists of 60 poly-crystalline PV cells connected in series, and its data is obtained under standard test
conditions (STCs) [22]. Table 1 provides a comprehensive overview of the parameter ranges for the
three panels. Consistently, the population size P is fixed at 100, and the maximum iteration limit ¢y,
is standardized at 10000 iterations for all three algorithms to ensure a fair comparison and equitable
decision-making.

Table 1. The parameters range for the different modules and cell.

RTC France =~ PWP201 TP240
Lb Ub Lb Ub Lb Ub
Ly(A) 0 1 0 2 0 9
In(A) 0 le6 0 50e-60 0 le6
R.(Q) 0 0.5 0 2 0 06
Ren() 0 100 0 2000 0 100
a 1 2 1 2 12

Table 2 offers a thorough summary of the extracted parameters and RMSE values for each PV
system. Remarkably, the HBA exhibits the lowest RMSE among all three tested panels, as highlighted
in the table. Moreover, three algorithms consistently deliver smaller RMSE values, indicative of their
efficacy. The validation of these RMSE results is visually depicted in Figures 2—4, illustrating the I-V
curves of the experimental dataset juxtaposed with the estimated values for three panels. Notably,
the estimated current from all three algorithms closely mirrors the experimental data, affirming their
accuracy in extracting the PV parameters.

Table 2. Values of the five parameters and the RMSE for the different algorithms.

Module/cell  Algorithm  Ip, (A) Io (A) Rs () Rqn () a RMSE(A)
RTC France FPA 0.760774  3.214607e-07  3.640172e-02  53.675235  1.480693 9.861049e-04
TLBO 0.760780  3.232425e-07  3.637263e-02  53.644478  1.481254 9.860364e-04
HBA 0.760775  3.230205e-07  3.637709e-02  53.718438  1.481183 9.860218e-04
PWP201 FPA 1.028604  4.917640e-06  1.164628 1589.273 50 2.608133e-03
TLBO 1.030363  3.498403e-06  1.201378 1003.682 48.660815  2.429985e-03
HBA 1.030026  3.621041e-06  1.198060 1066.449 48.791193  2.429595e-03
TP240 FPA 8.683310 1.165333e-08  3.718959e-03  6.573485 1.159582 9.458277e-03
TLBO 8.684124  9.260328e-09  3.796484e-03  6.483112 1.146746 9.150916e-03
HBA 8.687114  8.129722e-09  3.812287e-03  5.840245 1.139565 8.753808e-03

In the remainder of this study, we will assess three algorithms using the absolute error (AE),

defined as the absolute difference between the estimated and experimental currents. Table 3 provides
a statistical analysis of AE, including the minimum (Min), maximum (Max), and average (Mean) values
for three algorithms and three tested panels. The results show that HBA produces the lowest mean
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Fig. 2. I-V characteristics of both Fig.3. I[-V characteristics of both Fig.4. I-V characteristics of both
the experimental and the estimated the experimental and the estimated the experimental and the estimated
data for RTC France cell. data for PWP201 module. data for TP240 module.

absolute error for PWP201 and TP240 modules. For the RTC France cell, FPA yields the minimum
mean absolute error, closely rivaling HBA’s performance. To offer a comprehensive view of AE results,
we illustrate the fluctuation of AE concerning voltage in Figures 57, confirming previous findings and
revealing a consistent pattern across all three algorithms. This uniformity is particularly evident in
Figure 5 for the RT'C France cell.

Table 3. Statistical result of absolute error (AE) for the different algorithms.

AE (A)
RTC France PWP201 TP240
Min Max Mean Min Max Mean Min Max Mean

FPA 8.6971e-05  2.5077e-03  8.2609e-04  6.5102e-05  5.5255e-03  2.1272e-03 1.6108e-03  2.2546e-02  7.0405e-03
TLBO  9.1150e-05  2.5143e-03  8.2846e-04 7.8253e-05  4.6363e-03  1.9740e-03 1.0845e-03  2.2543e-02  6.7003e-03
HBA 8.7178e-05  2.5122e-03  8.2765e-04 6.7921e-05  4.7896e-03  1.9696e-03  1.5887e-04 1.9641e-02 6.2603e-03
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Fig.5. The curves of the absolute Fig.6. The curves of the absolute Fig.7. The curves of the absolute
error for RTC France cell. error for PWP201 module. error for TP240 module.

4. Conclusion

This study evaluated the efficacy of three widely used metaheuristic algorithms in ascertaining param-
eters for both the single-diode model (SDM) and the PV module model (MM). The study’s results
indicate that all three algorithms demonstrate effective and accurate estimation of PV parameters,
with nearly identical performance, as reflected in the low values of RMSE and AE. Nonetheless, the
Honey Badger Algorithm (HBA) exhibits superiority, yielding the best RMSE at 9.860218e-04 A for the
RTC. France solar cell, while the Flower Pollination Algorithm (FPA) produces the highest RMSE at
9.458277e-03 A for the TP240 module. Concerning time complexity, both HBA and FPA demonstrate
similar computational times, each requiring approximately 8 minutes. In contrast, Teaching-Learning-
Based Optimization (TLBO) takes around 13 minutes to ascertain the PV parameters. Future research
directions will focus on enhancing the algorithms’ performance in solving PV model parameters, with
the goal of reducing complexity time and minimizing errors.
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Ouinka doToenekTpuyHuUx NnapameTpis 3a AOMNOMOrOI0 TPbOX
METaeBpPUCTUYHNX aJITOPUTMIB: MOPIBHSASIbHE O0CNIOXKEHHS

Empxammyni AL, Ensxyri M1, Apxnan En. X1, Ben Xuamy .1, Jligaii6i C.1,
Caamayi ., Yymni 1.1, A6azin 1.1, €ced M .2, Bencrivan M.

L Ta6opamopis mamepianis, cuznanis, cucmem ma isusrozo moodes06aHHA,
Daxyavmem npupodrnuvux Hayk, Yrisepcumem Ion 3oxp, Aeadip, Mapoxko
2 Jla6opamopis LIMAS, @axysvmem nayx Jxap Eav Mapas,
Vuisepcumem Cidi Moxameda Ben Ab6danrnazra, Pec 30000, Mapoxko
3 Buwa wxoaa mexnonoeiti, Yrisepcumem Cidi Movameda Ben A6deanrazxa,

Dec 30000, Maporxo

CoHsiuHe CBITJIO CJIy?KUJI0 OCHOBHUM J[?KEPEJIOM €HEpril 3 MOMEHTY 3apPOIKEHHSI KUTTsI
ma 3ewsti. He3Barkaroun Ha NMOSBY ajJbTEPHATUBHUX JPKEpEJI €Heprii, TAaKUX SK BUKOITHA
Ta siIE€PHA €HEPTisd, COHSYHA €Heprisl 3aJUIIA€ThCA HANOLIBIN €KOJIOTITHO YUCTUM 1 €KO-
HOMIYHO e(eKTUBHUM BapianToMm. Bukopucrtanms 1€l eneprii nepeadatae BUKOPUCTAHHS
doroenexrpuunux (PV) momynis mis BupobHuirsa egekrpoeHeprii. I'pyrroBai mocsti-
JKEHHSI TIPUCBsiIeHI (DOTOETEKTPUIHUM MOJIYJISIM 3 OCHOBHUM aKIIEHTOM HA €JIeKTPUIHOMY
MOJIEJTIOBAHHI, SKe Bifirpae BI/IpiH_IaJ'II)Hy pOJIb B e(DEKTUBHOMY KepyBaHHI CbOTOGJ’IeKTpI/I‘{—
OXOIUTIOIOTH PI3HI eJeKTpUYHI MOesH, BKIFOUAoIn onHomonHy moaeas (SDM), mozasiitay
mionay Mozesns (DDM) i morpiitay gioany mogens (TDM). CkiaHiCTh OJIATae B TOTHOMY
BU3HAYEHHI HEBIJIOMUX MTapaMeTpiB, sdKi MOB’sa3aHi 3 KOKHOIO Mojetio. Ile moctimKenns
Mag 9iTKy MeTy: BUPIUTH TpobIeMy BU3HAYEHHS HEBJIOBUMUX ITapaMerpiB y mexxax SDM.
OCHOBHOIO METOIO € MOPIBHSIHHS e(DEKTUBHOCT] TPHOX METAEBPUCTUIHUX AJITOPUTMIB, & Ca-
me: asgropurmy 3anmienHst keitis (FPA), ontuMmizanii Ha ocHOBI BukajaHHs i HABYAH-

st (TLBO) rta amropurmy memonoca (HBA) y BusHaveHHI 1ux HEBiIOMEUX mapameTpis.
Ha mpaxTurii e goc/tiKeHHsT TOMUPIOETHCS HA OIIHKY IMHUX aJTOPUTMIB HA KOHKPETHUX
bOTOEIEKTPUIHAX MOIYJISIX, TakuX K Momysab Photowatt-PWP201, moxyns Tata Solar
Power TP240 i cousuna 6arapes RTC France. Orminka pesynbprariB 6a3yerbcs HA 3HaA-
yennax cepeaubokBagparnanol nomuiku (RMSE). Ipumitao, mo HBA Buaingerses tum,
[0 JEMOHCTPYE UyJI0BY IPOAYKTUBHICTB, Jlocsaratoun HaiHuzk4aoro RMSE 9.860218e-04 A
st corstarol 6arapel RTC France. [ napnaku, FPA dikcye naitsunuit RMSE, nocsraroun
9.458277e-03 A g momyna TP240.

Knrouosi cnoBa: consauna enepeia; Modeaosants GomoesekmpuiHuT Cucmem; ouinKa
NAPaMEMPIB; MEMAELEPUCNUYHT AN2OPUMMU.

Mathematical Modeling and Computing, Vol.12, No. 1, pp.1-9 (2025)



