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1. Introduction

Mathematical models are frequently used to study disease transmission dynamics as well as epidemi-
ological characteristics. Based on these potential models, control and mitigation strategies for the
epidemics can be developed. Actually, epidemic disease has received much attention in recent years
due to its impact for humanity, which offer many deaths, problems of system health and affected
economy [1,2]. Many epidemiological models are actually expressed in system of mathematical de-
terministic concepts [3-8|, and deterministic models have traditionally served as the foundation of
mathematical epidemiology. The SIR and SEIR models have shaped much of current understanding
of recurring epidemics [8-15]. The concept of SDE was successfully implemented in various field such
as population systems, economics and finance, and neural networks. Recently, it was derived that
mathematical models with a white noise type are mostly used to describe the universal laws.

This paper focusses on the SIRC model and in the considered SIRC model, the population is
divided into four distinct classes: the susceptible S(t), the infected I(t), the recovered R(t), and the
cross-immune C(t) individuals. Motivated by the above works, we conclude that combining nonlinear
incidence and random environmental factors in the deterministic delayed SIRC model will be more
efficient to handle physical phenomena. So, the considered stochastic SIRC epidemic model takes the
following form

as(e) = [ - s(0) -
5S() I(t — )

BS()I(t — ) S(t) I(t — 5)
P(I(t)) P(I(t))

# B0 = (3 )T(0)] de = oal () D)

+’I’}C(7f):|dt—0'15(t)dwl(t)—05 dW5(t),

dI(t) = [

+ o5
dR(t) = [(1 = p)BC({H) I(t) + a I(t) — (v + O)R(t)] dt — a3 R(t) AW5(2),
dC(t) = [0R(t) = BC{) I(t) = (v +n) C@)] dt — 04C(t) AWa(t).

In the model (1), the biological significance of dynamic properties and parameters can be seen in |3,
16], which we have omitted here. The Brownian motion W;(t), j = 1,...,5 are mutually independent
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standard defined on a complete probability space (2, F, P) with a filtration {F;},. satisfying the usual
conditions, ajz, j =1,...,5 denote the intensities of the environmental factor. The initial conditions
of the model (1) are

S(x) =®1(x), I(x) = P2(x),

(x) =®3(x), Cl)=
(2)

[ ]7

=1,...,4,

where C is continuous function space C( 1), and Ry = {(z1, 22, 23, 24)|z; > 0,5 = 1,...,4}.

By a biological meaning, we further assume that ®;(0) >0, fori=1,...,4.

This model is theoretically analyzed and some theorems about global existence and uniqueness
of positive solution are given in section 2. Extinction of disease in section 3, as well as the proof is
provided for both the existence and uniqueness of an ergodic stationary distribution in section 4. A
numerical code is elaborated for numerical solution and here after some of the obtained numerical
solutions of the considered SIRC epidemic model with specific parameters.

“N
=)

0, x
C, J
;R4

2. Existence of the global and positive solution

In order to study dynamics of the SIRC epidemic model with delay, the first concern is whether
the positive solution of the system exists globally. Within this section, proper Lyapunov function is
constructed to establish the existence and uniqueness of a positive solution of the system [17].

Theorem 1. For the given condition initial (2), there exists unique positive solution X(t) =
(S(t),I(t), R(t),C(t)) on [—3,—0o0) for the system (1) and X (t) € R with probability one. In other
words, for any t > —s, X(t) € RY almost surly (a.s.).

Proof. The local Lipschitz conditions are met by the coefficients of the system (1) are locally Lipschitz,
then for any initial value (2), system (1) has unique local solution X (¢) on ¢t € [—s, 5), where s is
the explosion time [17]. To show that solution is global, we only need to demonstrate it for s, = oo
a.s. Define the stopping time s* by

:inf{te[%%e):S()<Oor[()<OorR()<OorC()< 0},
with the usual setting inf @ = oo, where @ is the empty set. Obviously, »* < 5. So, if we can prove
that »* = 0o a.s., thus s, = oo and X(t) € R4 a.s. for all ¢t > 0. Suppose that »x* < o0, then there

exists T' > 0 such that P{s>* < T} > 0.
Define a C?-function V': Ri — R4 by

t+x
V(X (1) = In (S() I(t) R(t) C(8)) + 8 /t I(u— ) du. (3)

Using [t6’s lemma, we obtain,

I(t — >

AV(X(t) = LV(X(t)dt + o5 (S — 1) ) aws (1)

¢(I)
— 01 dWl(t) — 09 de(t) — 03 de(t) — 04 dW4(7f),
where
EVIX() = 160~ I~ )+ 5 —7 =BT 4
+p I upC -t @)+ (-G Fag - (1+0)
R 02 I’(t — ) ol+os5+0i+07 o2 SPIP(t—x)
O BI=0+m =5 —aq 2 BPECIONE
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If X(t) is positive and ¢(I) > 1, then it implies that

VX)) > 81— ) =510~ (@ +5-40)
02 I*(t— ) oi+0l+oi+o] o SPIA(t— x)
2 () 2 2 g
= K(X(t))
So, we have
dV(X () > K(X(t))dt — o1 I(t — 32) AW (t) + 05 (S — 1) % dWs(t)

— o1 AW (t) — o2 dWs(t) — o3 AWs(t) — o4 dWi(2),
then

V(X (1) > /0 K(X () du + o5 /0 () = 1) I(u — 32) W5 ()

+ V(X(0)) — oy Wi (t) — 0aWa(t) — osWs(t) — agWa(t). (4)
Note that X (»*) = 0. Therefore,
lim V(X(t)) = —oc.

t—roc*
Letting ¢t — »* in (4), we have

— 00 = V(X(O)) + /OV K(X(u)) du — O'1W1(%*) — O'QWQ(%*) — O’3W3(%*)

a*

W) + o / (S(u) = 1) I(1 — ) AWs (1) > —o0,
0
which results in a contradiction. Therefore, it can be concluded that »* = co a.s., thereby completing

the proof of Theorem 1. ]

3. Disease extinction

Let us note by

: 8
(vta+F+F)A(v+0+F)A(v4n+E) @
Theorem 2. Let (S(t),I(t), R(t),C(t)) be the solution of the system (1) with the initial condi-
tions (2). If Rg < 1, then the solution of the system satisfies

Jim sup <1n([(t) + Rt(t) + C(t))> <QRe-1) as

Furthermore, lim sup(S(t)) =1 a.s.
t—r00

RE = a A'b = min{a, b}.

Proof. Let Z(t) = I(t) + C(t) + R(t) and M(t) = S(t) + I(t) + C(t) + R(t). By applying the Ito’s
lemma, we obtain

B 1 BSI(t — ») 1
dan(t)_{f+R+c [ (1) ]_2(I+R+C)2

SI(t — )
o(I)

2
o3I + o? [ ] + R%03 + C%ﬁ] } dt

- ﬁ [02 IdWs(t) + % dWs(t) + o3 RAWs(t) + o4 CdW4(t)]
BSI(t— x) 1 2o o (SI(t—3)\? 2 9 2 9
<{ 5(0) T3TXRLO? oy 1° + o5 <7¢(I) > + R%03 + C*0} }dt
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1 SI(t— )
— 7[ TR+ C |:0'2IdW2(t) + W dW5(t) + UngWg(t) + O'4CdW4(t):|
o B_(a%+a§)IQ+RQJ§+C2UE it
h 21+ R+ C)?

1 [ SI(t— ) |
“TTRIC|™ IdWy(t) + o0 dWs(t) + o3 RAWs(t) + o4 C’dW4(t)_
SR up—— P +U—%+ % I’ + +5+ R*+ (~v+ +U—z C?l bt
S T+r+0)2 |\ 79773 7 T

1 [ SI(t—%) |
“TTRTC|™ TdWs(t) + o dWs(t) + o3 RAWs(t) + 04 C dw4(t)_

1 03 of o3 o3
< e —Z li2} -9 2
\{ﬁ (I+R+C)[<’y+a+2+2 AMr+Hd+5 A (r+n+ 5

(12+R2+C’2 ]}

I—I—R—I—C [ dW (t) SI(;( ) )dW5( )+O’3RdW3(t)+U4CdW4(t):|

< {ﬁ— [<v+a+§+%> <’y+5+ ;) A <’y+7]+%‘%> (IQ+R2+C2)Hdt
- ﬁ -02 TdW,(t) + % dWs(t) 4+ o3 RAWs(t) + 04 C dW4(t)-
:Q(RE—l)dt_ '
_ﬁ o2 I dWa(t) + %dw5()+a3RdW3()+U4CdW4() .

By integrating the precedlng inequality from 0 to ¢, and dividing both sides by ¢, we achieve the
following result:
In Z(t)

= <QRp 1)~ Wi(1), (5)

where

1 [t 1
() =7 /0 T(5) + R(s) + C(s)

X |:O'2[(S)dW2(S) +

W dWs(s) + o3 R(s) dWs(s) + 04 C(s) dWa(s)| .

By applying the strong law of large numbers to the Brownian motion [17] we obtain that, tli)m Uyi(t)=0
a.s., which indicates tli)m I(t) = R(t) = C(t) =0 a.s., when Rp < 1.

From the model (1), we arrive at

dM(t) = (n —nX(t))dt — o1 S(t) AW — o9 I(t) AWa — 03 R(t) AW3 — 04 C(t) dWi. (6)
Taking the integration of (6), from 0 to ¢, one gets
(M(t)) = 1+ W), (7)
where
w0 = L) - Ly - bSO
02 fo s) dWs(s ) o3 fo s)dWs(s ) o4 fo s) dWy(s)
t t t
Thus, we have llglo Uy(t) = 0 a.s., then tgngo (S(t)) =1 a.s. This completes the proof of Theorem 2. m
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4. The existence of unique ergodic stationary distribution

Our interest is the study of the epidemic dynamical system when the disease persists and prevails in
the host population. In this section, we show that the system has a stationary distribution using the
Khasminskii’s theory [18].

Lemma 1 (Ref. [18]). If a bounded domain D C R? with a regular boundary I' exists, then the
Markov process X (t) will has a unique ergod1c stationary distribution m(-), and

1) A positive number exists K such that Z” Laij(@)viv; = Klv|?, 2 € D, v € R4

2) A non-negativeC2-function V exists such that LV is negative in R1\D.

Then -
Py { lim 1 f(X(t))dt = f((L')?T(d(L’)} =1,
]Rd

T—oo 1 0

for all z € R?, where f(-) is an integrable function with respect to the measure 7.
The stochastic model’s reproduction number is defined by:
R — 7625(1 — 1)
s o? o2\’
<7+ + ) <7+a+ + ) <7+5+73> <7+77+74>
Theorem 3. IfRs > 1, then the solution X (t) = (S(t),I(t), R(t),C(t)) of system (1) is ergodic and

has a unique stationary distribution.

Proof. Let Z =S5+ 1+ R+ C. The diffusion matrix of the model (1) is given below:

2
SI SI
01S% + o2 ¢(I)> —o? <¢(I)) 0 0
2
A= —o? (%) 03I? + o2 (%) 0 0
0 0 o3R? 0
0 0 0 20?2

By choosing

ST \? ST \?
K= iy {”?52 vt () o+ () RC}

one gets for all X € D, and v = (v1,v9,v3,14) € ]Ri that

St (1005 (G5 ) (i (35

i,7=1

SI

2 p2 2

2

+ 03 R*V3 + 03C%v} — 5<¢(I)> 202

> Klv|?,

Thus, the first condition of Lemma 1 is satisfied.
Let us C2-function V': ]Ri — R is in the following form

t+x
V(X)=M <—clln5—021nl—03lnR—C4lnC+ﬁ/ I(t—%)ds)

t+c
— (S+I+R+0)" —InS— 1n1+5/ I(t—»%)ds—InR—InC

9 +1
:MT1+T2+T3+T4—|—T5+T6,
where ¢j, j = 1,...,4 are positive constants that will be specified later. 6 is a constant satisfying
1<6< Zal a Vb =max{a,b}, and M > 0 satisfies

PP R ) R
o1VoyVozVoiV2os

~MA+G < -2, (8)
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where A = 4~ [Ré — 1] > 0, and

1 0
G = sup {—— [’y—g(af\/ag\/ag\/az\/Qag)] o+

XeRY 2
2 2 2 2 2 72 2
o{+05+05+0 ot I[#+ S
4y 4+ 28I b Byt -——2_ 3 "4, 57 - 9
+4y+26I+a+6+n+ B+ 5 + 5 2D 9)
and
1 0
B = sup {7(S+I—|—R+C’)9—§ [7—5(0%\/03\/0?%\/03\/203)} X(S—I—I+R—|—C’)€+1}<oo.
XeRY
(10)

It can be easily verified that

liminf  V(X) = oo,
k—00, XERL\ Dy,

where D, = (L,k) x (L, k) x (£,k) x (%,k). Furthermore, V(X) is a continuous function, that
k k k k

must have a minimum point V(X (0)) in the interior of RY. Then, the C>function V: R} — Ry is
non-negative and defined as follows

V(X) =V(X) - V(X(0)
= MY+ To+ T3+ Ts+ Y5+ T — V(X(0)), (11)

where
t+c
Tl:—cllnS—62lnI—03lnR—C4lnC+ﬁ/ I(s — »)ds,
t

ZG+1
41

1
T I 0+1 __
2= 9+1(S+ —|—R+C)

4
T4:—lnl—|—5/ I(s—3)ds, YTs=—-InR, Y¢=—-InC,
t

YT3=—InS,

The application of It6’s lemma to various Y; (j =1,2,...,6) provides that

£T1 = —C1 1

I(t— C 2 It —»)\?
S+C17+615M—C1U§+C1%+61— <(7))>

o(I) 2 oI
_ o3 2 B 2
~ P s - a0 e+ e (SIS
2
—c3(1— u)ﬁ% — c;),aé +e3(y+9)+ 03%
2

R
- 6455 +caBI +ca(y+n) + 04%

S CI R o? 2
<~ (af +asys+al-wsg +adg ) +a(1+ G+ F)

2 2 2 52
talvrg 5 ) e 7—1—54—7 +cy 7—1'77‘1'7 Bler+ea)l

f o2 2
< —4[010263047525 I-—p]*+Bc1+ca)+a <7 + 71 + 75>

o3 o3 o3 o}
+ ¢ ’Y—l-?ﬁ-? + c3 ’Y—i—(s—i—? + ¢4 ’Y+7]+? .

Now, taking ¢; (j =1,...,4) such that
2 2 2 2 2 2
AN AN AN o\ _
cl<’y+2+2> 02<'y+2+2> c;;(’y—i— +2> C4<’Y+T]+2> Vs
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then

=

V828 (1 — p)
(’y+02—%+0—2§> ('y+0—2%+0—2§> (’y+5+62—§) (’y+n+a2—‘%)
= -+ B(c1 +c4)I; (12)

LT < —4y

—1 +5(C1+C4)I

LYy =2y —~Z] + gze—l

2S2+U2 +03R2+U4C2+2U5<S[ >2
o(I)
0
<20y —~Z] + §Z€+1 (O’% Vo3 Vo3 VoiV20?)
0
<zl — 701 [7] —3 (O’% VoiVoiVog \/2052,)}

1 o
<B-- [7——(0%\/05\/032,\/02\/20@] 701

2 2
<B- % [7_ g (2Voivadvol \/203)] <Se+1 40+ 4 ROt +C@+1) : (13)
where B is defined by (10). ) N 9
£T3=—%+v+ﬁ%—n%+%+%<%> (14)
ri= s po e+ Ba B (LAY )
== (1-w) A ok b (1 0)+ 2 (16)

R o2
£T6:—55+61+(7+n)+7 (17)
From (14)—(17) one gets:

1
ﬁVﬁ—M)\—i-M,B(Cl—i-CAt)I—g |:’y—g

SI(t— ») CI 1
W—MBC—(l—#)ﬁf—@—

R
R
—+28l+a+5+n+

(a% Voivoivaiv 203)} (SG'H + 19+ 4 RO 4 C€+1>

~ C
ST PURIS S
gtdr—ng -8
B of +o3toi+oi 2P+ S

c 2 2 (1)
The bounded close set is defined by

1 1 1 1
DZ{XGRiiﬁ<S<—,€2<I<—753<R<—754<C<—},
€1 €9 €3 €4

where €; > 0 (j = 1,2,3,4) are sufficiently small constants satisfying the following conditions

max{—l,— 6—2,—76—3}—1—F<—1, (18)
1 €3 €4

—M/\+M5(61+C4)62+G<—1, (19)

_i_fy—g(a%\/ag\/ag\/ai\/ZUE)_#—i—Hé—l, (20)
1 0 1

-1 5(”1V”2V03V"4V205)_63T+J<_1’ (21)
1] 0 1 1

_1_7 5(01\/02\/03\/04\/205)_€§T+K<_1’ (22)
1] 0 1 1

_Z_fy 5(01\/02\/03\/04\/205)_6?1T—1-L<—1, (23)
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where
1 0
F = sup {Mﬁ(cl+64)I+B—§ [7—5(0%\/0’%\/0’%\/03\/209] (59+1+I€+1+R9+1+C’9+1)
XeRY
2 2 2 2 2 12 2
o] +o5+05+o0 o I°+ S
4y + 281 ) L -2 178 475
+dy+28I +a+d+n+ 5 > ) |
1 0
H = sup {Mﬂ(61+64)I+B——[’y——(a%\/a%\/ag\/az\/2ag)] SO+
XeRY 4 2
1

0
~3 [’y b (0% vV 0% Vv ag Vv ai Vv 2052,)} (I‘g'Irl + RO COH)

2 2 2 2 2]2 52
Ay 428 fat 4y A2 o3 on o5l },

2 2 @)

1 6
J = sup {MB(61+C4)I—|—B—— [’y——(a%\/a%\/a%\/ai\/&;?)] 1o+
XeRrY 4 2
1 0
~3 [’y —3 (0% VoiVoiVvoiv 20?)} (56-1—1 + RO 4 C’GH)

2 2 2 2 2 712 2
o] +o5+o5+o o I°+ S
+dy+28l +a+5+n+1—2 3 A4 D }

2 2 ¢(I)

1 0
K = sup {Mﬁ(cl+64)I+B—— [7——(0%\/05\/0’5\/03\/20’?)] ROT!
XeRr 4 2
1 0
—3 [7 —3 (0’% Voiv ag Voiv 20’%)} (S(”'1 + 10+ 4 C’@H)

2 2 2 2 2[2 52
Ayt 28l vatopnp LTI GBI }

2 2 ¢2(I)

1 0
L = sup {Mﬁ(cl+64)I+B—— [7——(0%\/03\/032,\/02\/2052,)] Sian
XeRY 4 2

1 0
— = [7 —3 (0’% V a% V ag V az V 20’?,)} (S‘ngl + 7ot 4 R9+1)

2
2 2 2 2 2 72 2
oy +o5+05+0 oc I+ S
4y + 281 § L2353 4435
+dy+28l +a+d+n+ 5 > 220 [’

To complete the proof, we must demonstrate that £V < —1 for any X € Ri\D = ]Ri\ U§:1 D;, where
Di={XeRi:0<S<e}, Dy={XeR,:0<I<e},
D3={XeRL:0<R<es]>e}, Di={XeR,:0<C<eq,R>e3},

1 1
D5:{XGR1;S>E—1}, Dﬁz{XGRi:I>5},
4 1 4 1
D7: X€R+R>5 5 Dgz X€R+C>€—4 .
Case 1: For all X € Dy,
1 0
LY < —% -3 [’y -3 (o3 VosVo3VoiV 205)} (S + 17T 4 RO 4 ¢
2 2 2 2 272, g2
+Mﬁ(c1+c4)I+B+4fy+2BI+a+5+n+01+U2+U3+U4 i
2 2 ¢*(I)
~
<—=+F
S-I—
<-LiFr<,
€1

which is obtained from (18). Therefore, LV < —1 for any X € D;.
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Case 2: For all X € Do,
1
ﬁVé—M)\+Mﬁ(cl—|—C4)I—§ ’y—g(a%\/ag\/ag\/ai\/Qag) 7o+

of+o3+o54+0F o0EI*+5?

B+ 4y + 251 o -
+B+4y+28l+a+d+n+ 5 +5 20

<—MA+MB(c1+ec)+G
<—MA+MB(c1+ca)ea+G < —

which is obtained from (19). Then, £V < —1 for any X € Ds.
Case 3: For all X € Ds,
I 1 o

LY < Rl R (0% VoiVvoivaoiV 20’%) (59+1 + 0%t 4 RO 4 C’GH)
2., 2, .2, 2 2712 4 g2
+Mﬁ(c1+c4)I+B+4fy+2BI+a+5+n+01+U2;U3+U4 %(b%([)
I
<—a=+F
aR—i-
<—aZ+F< -1,
€3
which is obtained from (18). Thus, £V < —1 for any X € Ds.
Case 4: For all X € Dy,
R 1 0
,CVS—’yE—i 7—§(U%VU§\/U§\/J§\/2U§) (56+1+I‘9+1—|—R€+1+C6+1)
2., 2, -2, 2 272, Q2
o +o53+05+0 ot I+ S
+MB(cr+e)I+B+4y+ 28I+ a+6+n+ = 22 3 4 75¢2(1)
R
< —NE 4 F
70‘1'
<2 1P,
€4
which is obtained from (18). So that, £V < —1 for any X € Dy.
Case 5: For all X € D5,
o
4[ —3 01\/02\/0’3\/0’4\/205)]59+1—|—Mﬁ(01—|—04)1
1 9
Z[ ~3 (o1 \/0%\/0%\/02\/20?)] (I€+1+R9+1+CG+1)
o2+ o3 +o2+o3 oI?+ 52
4y + 281 5 L2 3 4495
B4y +28I +a+d+n+ 5 2 22D
1 0
STy [7—5(0%\/03\/032,\/02\/2052,)]59+1—|—H
1 0/ 2, 2, 2, 2 2
<—Z Y — 5(0'1\/0-2\/0-3\/0-4\/20-5) ?—FHQ—L
which is obtained from (20). Thereby, £V < —1 for any X € Ds.

Case 6: For all X € Dg,

1

LY < 1 [7 (01 Vol \/0’3\/0’4\/20’5)] I L MB (1 +eq) T
1
1 Y=

[\3|¢b l\’JICb

(01 VaoiVvoivoiv 205)] (S(H'1 + RO ¢ CQH)

o2+ 024+02+02 o212+ 52
B+ 4y + 281 ) 1172 "3 4,455
+B+4y+28l +a+d+n+ 5 2 ()

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 84-95 (2024)




Time delay and nonlinear incidence effects on the stochastic SIRC epidemic model 93

1 6
— |:’y—§(0'%\/0'§\/0'32,\/0'2\/20'52’):| g
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which is obtained from (21). Therefore, LV < —1 for any X € Dg.

Case 7: For all X € Dy,

1 9
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4 0+1
2).

which is obtained from (2
Case 8: For all X € Dy,

Then, LV < —1 for any X € D7.

1
_Z[ -3 0—1\/02\/0—3\/04\/20' )]09+1+Mﬁ(01+64)1
1 0
‘1[ ! leagwngvzag)] ($77 4+ 1771 + RO
2 2 2 2 2 72 2
c2+oi+o02+0 oI+ S
Bday+28l+a+d+n+ 123445

2 T $2(I)

1 0
< ~1 [7—5(01 ViV oiVogV 202 )] L
1 0 1
< Z 7—5(0'1\/0-2\/0-3\/0-4\/20-5) $+L<—1,

which is obtained from (23). So, LV < —1 for any X € Ds.

Obviously, the second condition of Lemma 1 is satisfied. The system (1) is then ergodic and has a
unique stationary distribution. ]

5. Numerical results and discussion

This section is devoted to numerical simulations of the considered stochastic SIRC epidemic model
in order to use the theoretical results obtained above and to give an insight in the understanding of
the real-world dynamics. The numerical solution of the system (1) is simulated by using the Euler—
Maruyama method [19,20]. By discretizing the time interval into 100 equidistant time steps, we
simulate the system (1) with specified parameters, initial conditions and that incidence function ®(I) =
14 1%

The sample paths (solid lines) of Figure 1 present the dynamics of susceptible S(t), infected I(t),
recovered R(t) and cross-immune C(t), which show that if the threshold Rg < 1, then the epidemic
disease will go to extinct, and if the value Rs > 1, then the stochastic model has a unique ergodic
stationary distribution in Figure 2. The corresponding mean of each group (dashed lines) is obtained
by using Monte Carlo method with 10000 solutions of the considered stochastic SIRC in the case of
disease extinction and stationary distribution.
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Fig. 1. Path solution and the corresponding mean of  Fig. 2. Path solution and the corresponding mean of
10000 solutions of the stochastic SIRC model in the 10000 solutions of the stochastic SIRC model in the

case of disease extinction. case of stationary distribution.
30 ‘ ‘ ‘ i In Figure 3, we compare the Kdensity of infected indi-
viduals I(t) by using three different nonlinear functions.
25
20t L 1 6. Conclusion
5t | \ ] Based on the deterministic analysis of SIRC epidemic
“ “ model, the stochastic version is improved by incorporat-
10f | \\ 1 ing white noise type of stochastic perturbation factors. We
also combined time delay and nonlinear incidence function
°f ‘ | ] % to describe the mechanisms of transmission of
oL , ‘ ‘ o the disease.
01 0.5 02 025 03 035 The considered stochastic SIRC epidemic model with
Fig.3. The Kdensity based on 10000 sim-  time delay and nonlinear incidence is investigated theo-
ulations for Infected population at time ¢ = yetjcally and numerically. The Lyaponov analysis method

100 with different incidence functions. is used to prove the existence and uniqueness of the solu-

tion. Moreover, the sufficient conditions for extinction and the existence of stationary distribution are
obtained. Numerical procedures are also elaborated allowing to study the stochastic dynamic SIRC
behavior. The effects of time delay, nonlinear incidence and intensity of withe noise can be analyzed.
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Bnauve 4acoBoi 3aTpuMKN Ta HeNiHIAHOT 3aXBOPIOBAHOCTI Ha
cToxacTudHy mogens enigemii SIRC

Ben Jlax6i6 A., Azpap JI.

Hayxosuti yenmp STIS, M2CS, xadedpa npuraiadnoi mamemamuru ma iHPopmamuru,
ENSAM, Ywisepcumem Moxammeda V, Pabam, Mapoxko

V 1iit cTaTTi MOJAHO TEOPETUIHI Ta IUCETbHI JTOCIIKEHHST CTOXaCTHIHOI MOJIe T eIriieMil
SIRC i3 gacoBOIO 3aTPUMKOIO Ta HEJIHIHOI YacToTo. JlOBeIeHO iCHYBaHHS Ta €INHICTH
100aJIBHOTO JIOJIATHOTO PO3B’si3Ky. BukopucTano Mero anati3y JIsmyHoBa mjist oTpuMaH-
H¢I JIOCTATHIX YMOB iCHYBaHHSI CTAI[IOHAPHOTO PO3MO/IL/IY Ta 3HUKHEHHS XBOPOOU 3a MEBHUX
npumymiesb. TakoxK 3/iiCHEHO YHCeJIbHEe MOJIEIIOBAHHS IS PO3IVISHYTOl CTOXACTUYHOI
MOJIeJIl 3 METOIO MiJITBEP/?KEHHS TEOPETUIHUX BUCHOBKIB.

Kntouosi cnoBa: modeav SIRC; cmoxacmuunuil; wacosa 3ampumka; dyrxuia Janymno-
8a; HEAIHITIHG 3GLEOPIEAHICMDY; CMAUIOHAPHUT PO3NOJIA.
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