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Aerodynamic shape optimization is a very active area of research that faces the challenges
of highly demanding Computational Fluid Dynamics (CFD) problems, optimization with
Partial Differential Equations (PDEs) as constraints, and the appropriate treatment of
uncertainties. This includes the development of robust design methodologies that are
computationally efficient while maintaining the desired level of accuracy in the optimiza-
tion process. This paper addresses aerodynamic shape optimization problems involving
uncertain operating conditions. After a review of possible approaches to account for
uncertainties, an Artificial Neural Network (ANN) model is used to approximate the aero-
dynamic coefficients when the operating conditions vary. Robust optimization problem-
solving approaches based on deterministic measurements are used, inspired by the work of
Deb [Deb K., Gupta H. Introducing robustness in multi-objective optimization. KanGAL
Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technol-
ogy, Kanpur, India (2004)]. The first procedure is a direct extension of a technique used
for single-objective optimization. The second is a more practical approach allowing a user
to define the desired degree of robustness in a problem. These approaches have been tested
and validated in the case of the optimization of an aircraft wing profile in the transonic
regime considering two uncertain variables: the Mach number and the angle of incidence.
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1. Introduction

In recent years, the continuous progress of Computational Fluid Dynamics (CFD) has paved the way
for optimization, mainly of shape and design by numerical simulation of incompressible aerodynamics
and its coupling with other disciplines. Optimal design in aerodynamics is a field at the interface of
several classical disciplines where many technical components must be assembled. As a result, shape
optimization raises many challenging topics in numerical analysis, concurrent engineering, and software
development. These include the development of robust optimizers that take uncertainty into account
in the optimization process.

Deterministic shape optimization techniques or deterministic computational fluid dynamics (CFD)
simulations have been widely used in engineering to improve product quality. However, many uncertain
factors arise in the practical design and application. Deterministic optimization has not considered
the influence of uncertainties. Its optimal form can be susceptible to uncertainties, leading to poor off-
design performance and even failure to meet the design requirements. Instead of deterministic shape
optimization, a new shape optimization called Robust Design Optimization (RDO) has been proposed
in recent years. A shape optimized by a deterministic shape optimization approach may not achieve
the expected performance for industrial problems due to these errors and uncertainties. In the context
of Robust Aerodynamic Design Optimization (RADO), robust design implies that the performance
of the final configuration is insensitive to uncertainties in the operating conditions and the geometry.
The objective of RADO is to optimize the quality of a product and, at the same time, to reduce the
impact of uncertainties on product performance. Compared to traditional deterministic optimization.
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An essential element of RADO is Uncertainty quantifications (UQ), which can significantly increase
the computational expense of the design process compared to the computational effort of deterministic
optimization. The optimization of aerodynamic shapes is a very active research area that has to face
the challenges posed by very demanding computational fluid dynamics (CFD) problems by optimiza-
tion with partial differential equations (PDEs) as constraints and by the appropriate treatment of
uncertainties. Therefore it is essential to develop an advanced approach and implement robust design
methodologies that are computationally efficient while maintaining the desired level of accuracy in the
optimization process.

A generalized RADO process has been developed to efficiently solve problems related to RADO.
This process involves constructing a mathematical expression and an optimization model based on a
given problem description. The flowchart in Figure 1 illustrates four important steps of the general
RADO process.
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Fig. 1. RADO process. Fig. 2. Surrogate model framework.

The first step is to choose an a priori geometric representation of the shapes and, consequently,
to search for a robust shape for a given problem. With parametric geometry modeling, the form of
the geometry is represented and deformed by design variables based on a specific geometry parame-
terization method. The most common geometric parameterization methods include spline methods.
D. I. Papadimitriou and C. Papadimitriou [1] used Bezier curves to parameters a 2D aerodynamic pro-
file. J. Nagawkar et al. [2], X. Du, and L. Leifsson [3] have used B-spline for 2D aerodynamic shapes
in RADO. In works [4–7], the airfoil geometry is represented using Kulfan’s Class and Shape Function
Transformation (CST) method. While optimization establishes performance measures from compu-
tational fluid dynamics (CFD), deformational methods are the most straightforward for defining the
body surface. A commonly used method for aerodynamic optimization is the free-form deformation
(FFD) approach, which is helpful if the geometry manipulations are particularly complex. It has more
advantages in terms of deformability for general three-dimensional configurations. The mentioned
studies [8, 9] successfully achieved efficient optimization of aerodynamic profiles by employing FFD
parametrization.

In an attempt to develop an automated shape optimization strategy, as mentioned above, flow
simulation is performed by computational fluid dynamics (CFD) to evaluate the aerodynamic response
of the system, which is then coupled with optimization algorithms to enable the search for the optimal
geometry. The aerodynamic performance is predicted by a CFD simulation which includes the gener-
ation or deformation of the mesh and the solution of the equations governing viscous or inviscid flows,
such as the Navier–Stokes (N-S) or Euler equations, etc. Solving the N-S equations requires a fine grid
and a higher computational cost. The works [10, 11] used the decoupling solver TAU provided by the
DLR1 which allows for an approximation of the aerodynamic coefficients and their gradients by the

1German Aerospace Center, (DLR)
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adjoint approach. Due to the computational intensity of CFD simulation, the surrogate model tech-
nique (also called meta-model) has been widely used to approximate the N-S equation solver to provide
efficient evaluations. The surrogate model involves establishing a mathematical approximation model,
which uses previously obtained sample data to predict objective function values at untested points,
Figure 2 shows the framework of the surrogate model. Works [5–7] have used the Kriging model to
predict aerodynamic parameters. Papers [3, 12] used the Polynomial Chaos Expansion (PCE) model.
J. Nagawkar and L. Leifsson [2] proposed the Polynomial Chaos Cokriging (PC-Cokriging) model.
They compared this meta-model to Kriging, Polynomial Chaos Expansion (PCE), Polynomial Chaos
Kriging (PC-Kriging), and Cokriging in the case of robust airfoil design optimization. According to
the work of [13], the Bayesian Neural Network (BNN) model was employed to forecast aerodynamic
parameters. Jun Tao et al., [4] used a PCA-DBN substitution model based on Principal Component
Analysis (PCA) and Deep Belief Network (DBN). The parameterization method applies the PCA
technique to the geometric parameters. The DBN model is established to predict the aerodynamic
parameters, with the reduced design variables as input and the aerodynamic parameters as output.
PCA-DBN is applied to robust aerodynamic design optimizations of a natural laminar flow (NLF)
airfoil and a transonic wing.

An essential aspect of RADO is UQ. Effective UQ methods can improve the computational effi-
ciency of robust aerodynamic optimization. Two types of input uncertainty must be considered in
robust aerodynamic design studies: uncertainties in operating conditions (e.g., Reynolds or Mach
number, angle of attack, etc.) and geometric uncertainties (e.g., manufacturing uncertainties, etc.).
Probability distribution functions (PDFs) are often used to quantify uncertainties in simulations, and
probability calculus is applied to propagate uncertainties. Optimal design under uncertainty is usually
formulated as a problem of minimizing a weighted average of the mean value and standard deviation
of a performance function subject to reliability constraints expressed in terms of the probability of
unacceptable performance being less than a given small probability value [1–6,11, 12]. The mean and
standard deviation are formulated as multidimensional integrals in uncertain parameters. Papers [2,4]
utilized Monte Carlo (MC) for estimating statistical moments in RADO with uncertain Mach numbers.
PCE has emerged as a computationally efficient alternative, used in works such as [5, 6] for RADO
with uncertain Mach number and lift coefficient. Shah et al. [12] combined probabilistic and interval
approaches for RADO with random and epistemic uncertainties, employing a global PCE surrogate
model. Schillings et al. [11] presented a robust airfoil design using KL expansion for geometric un-
certainties and PCE for quantifying output variability. Dimitrios I. [1] proposed a methodology for
aerodynamic shape optimization underflow and geometric uncertainties, utilizing KL and PCE ap-
proaches for modeling and quantifying uncertainties in the drag coefficient. Unlike the KL approach
used in [1, 11], Christian Sabater et al. [10] proposed a novel approach for robust optimization us-
ing quantile minimization under high-dimensional uncertainties. This approach combines Bayesian
regression for quantile estimation with Bayesian optimization for improving minimum quantile deter-
mination through sequential sampling. The method is tested on robust aircraft airfoil’s shock control
hump design under high-dimensional geometric and operational uncertainties. Xiaosong Du and Leifur
Leifsson [3] employed utility theory to formulate the objective function for aerodynamic shape opti-
mization under uncertainty, comparing it to deterministic and standard robust design formulations
in [14].

Once the mathematical expression of the robust optimization problem is defined, the efficient
optimization algorithm is used to optimize the aerodynamic performance of a parameterized geometry
under one or more key design point conditions. There are mainly two classes of optimization methods
based on CFD simulations. The first class of optimization methods is local optimization methods,
e.g., the descent method [14], which progress optimizes iteratively using the gradient of objective
functions and constraints. This type of approach is widely used because of its fast convergence speed.
The gradients of the aerodynamic functions, on the other hand, are complicated to calculate. In
general, the adjoint equation technique has been widely used to calculate the gradient [1, 10, 11, 14].
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Papers [2, 3] used the Sequential Least-Squares Programming (SLSQP) method. [1] used the Moving
Asymptotes Method (MMA), which replaces the difficult nonlinear, non-convex optimization problem
with a sequence of approximate convex sub-problems that are much easier to solve. The second class
contains gradient-free optimization methods that use only the values of the objective function without
using its derivatives, e.g., the differential evolution (DE) algorithms used in [6], and in papers [2, 4]
used the particle swarm optimization (PSO) algorithms.

This paper is organized as follows. In Section 2, the FFD parametrization technique is presented.
Section 3 offers the numerical methods of the CFD code and the ANN-based substitution model.
Section 4 presents the mathematical formulation of a shape optimization problem under uncertainty
in aerodynamics, as well as the approach used to take uncertainty into account. In Section 5, we
present numerical results concerning the application of the approach of Section 4 for the aerodynamic
optimization of an aircraft wing in the transonic regime. Two uncertain variables are considered in
this test case: the Mach number and the angle of incidence.

2. Geometry parametric modeling

Shape parameterization has acquired a significant role in airfoil design and optimization. The para-
metric description of the object geometry determines the computational time cost of the optimization
as well as the quality of its findings which influences the success of the optimization process.

2.1. Free-form deformation

The FFD (Free-form deformation) technique originates from the field of computer graphics [15]. It
allows the deformation of an object in 2D or 3D space, regardless of the representation of that object.
Instead of manipulating the object’s surface directly, using the classical B-Splines or Bézier parameters
of the surface, FFD techniques define a deformation field on the space embedded in a lattice built
around the object. By transforming the spatial coordinates within the lattice, the FFD technique
deforms the object, regardless of its geometric description.

x

y

z

Fig. 3. Parameterization of the wing with
a free-form deformation box with 84 matched
nodes. The torsion is parameterized separately

with 12 variables.

More precisely, we consider a three-dimensional
hexahedral lattice in which the object to be deformed
is integrated. Figure 3 shows an example of such a
lattice built around a realistic wing. A local coor-
dinate system (ξ, η, ζ) is defined in the lattice, with
(ξ, η, ζ) ∈ [0, 1]× [0, 1]× [0, 1]. During the deformation,
the displacement ∆q of each point q inside the lattice is
defined here by the third order Bézier tensor product:

∆q =

ni
∑

i=0

nj
∑

j=0

nk
∑

k=0

Bni

i (ξq)B
nj

j (ηq)B
nk

k (ζq)∆Pijk, (1)

Bni

i , Bni

j , and Bnk

k are the Bernstein polynomials of
order ni, nj, and nk.

Bn
p (t) = Cp

n t
p (1− t)n−p, (2)

(∆Pijk)06i6ni,06j6nj,06k6nk
are weighting coefficients, or control point displacements, which are used to

monitor deformation and are considered as design variables during the shape optimization procedure.
The success of the FFD method in aerodynamic shape optimization is due to several reasons:

— The mesh topology remains fixed during the optimization, so the mesh can be regenerated auto-
matically with high robustness (avoiding folding).

— Since the proposed technique is independent of the mesh’s topology, structured and unstructured
meshes can be treated similarly for configurations of complex configurations.

— The changes in the geometry are small.
— The number of parameters, which depends on the user’s choice, is typically small due to order

reduction techniques.
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3. Analysis and surrogate modeling

The second step in assessing the aerodynamic quality of a shape is to solve the fluid mechanic’s
equations, which govern the behavior of the fluid around the shape. In the context of our applications,
these equations are the Euler equations. In this section, we will present the numerical method used to
solve these equations and the substitution model used to replace the CFD simulations.

3.1. Aerodynamic analysis

Modeling. This study is limited to three-dimensional inviscid compressible flows governed by the
Euler equations, which are considered a simplification of the Navier–Stokes equations in the case of a
perfect fluid, i.e., a non-viscous, non-heat conducting fluid. It comprises five conservation equations
(four in 2D): a scalar equation for the mass, a vector equation for momentum, and a scalar equation
for energy. The equations of state can then be written in the following conservative form:

∂W

∂t
+∇ · F (W ) = 0, (3)

where W are the conservative flow variables
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
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and F (W ) = (F1(W ), F2(W ), F3(W ))T is the flow vector whose components are given by
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,

ρ is the density, U = (u, v, w)T is the velocity vector, E is the total energy per unit volume, and the
pressure p verifies the law of perfect gas states:

p = (γp − 1)

(

E −
1

2
ρ ‖U‖2

)

,

where γp is the ratio of the heat capacities at constant pressure and volume (γp = 1.4 for air).
Spatial discretization. The computational domain Ω is discretized by a triangulation Th, where

h is the maximum edge length of Th. A discretization of Eq. (3) at the mesh node si is obtained by
integrating (3) over the volume Ci, which is constructed around the node si by joining the barycenters
of the tetrahedra and triangles containing si and the midpoints of the edges adjacent to si:

Voli
∂Wi

∂t
+
∑

j∈N(i)

ΦF

(

W n
i ,W

n
j ,σij

)

= 0, (4)

where Wi is the mean state of the cell and Voli is the volume of the cell Ci, N(i) is the set of
neighbouring nodes, ΦF (W

n
i ,W

n
j , σij) is an approximation of the integral of the flows F (W ) on the

boundary ∂Cij between Ci and Cj which depends on Wi, Wj and σij the integral of a unit normal
vector on ∂Cij . These numerical fluxes are evaluated using upwinding, according to the approximate
Riemann solver of Roe [16].

Time integration. A first-order implicit backward scheme is employed for the pseudo-time in-
tegration of (4) to the steady state. The linearization of the numerical fluxes provides the following
integration scheme:

(

Voli
∆t

+ Jn
i

)

δWi = −
∑

j∈N(i)

Φ
(

W n
i ,W

n
j ,σij

)

, (5)

with δWi = W n+1
i −W n

i and Jn
i the Jacobian matrix of the first-order numerical fluxes.
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3.2. Artificial neural networks based surrogate modeling

In this study, the ANN-based surrogate model is built to replace CFD simulations during the opti-
mization process, thus accelerating the optimization’s convergence.

Neural networks are a type of surrogate model that can approximate a function. Neural networks
propose a non-linear analytical formulation to express a function with Ny > 1 outputs. The functioning
of biological neurons strongly inspires their design. Indeed, an artificial neuron can be seen as a transfer
function allowing to transform its inputs X = (X1, . . . ,XNX

) ∈ R
Nx into an output Z(X) ∈ R

according to precise rules, depending on the use of the neuron. As their field of application is vast,
this section focuses only on using neural networks for function approximation.

Output layer

Hidden layers

Input layer

Fig. 4. Framework of artificial neural net-
works.

In this framework, a neuron is written:

Z(X) = φ

(

Nx
∑

i=0

wiXi + bi

)

, (6)

w = (w0, . . . , wNx) are the weights for making a linear
combination of the inputs, b = (b0, . . . , bNx) is the bias
vector, φ indicates the activation function in the hidden
layer. Common choices of activation function are non-
linear functions such as ReLU, Sigmoid, and Tanh. In
this study we use the Swish function, proposed by Prajit
Ramachandran et al. [17] is given by

φ(x) = x(1 + e−x)−1. (7)

Figure 4 shows the structure of the ANN, which con-
sists of an input layer, hidden layers, and an output layer.

The initial step involves generating a target data set (CD, CL) with the assistance of the CFD model,
using an input data set determined via DOE (Figure 5). These target vectors are then utilized to train
the ANN model. The input layer of the ANN includes the design variables obtained through the FFD
parametrization method, in addition to the Mach number M and angle of attack α. Meanwhile, the
output layer of the ANN is responsible for representing the aerodynamic coefficients, specifically CL

and CD.

Perform DOE Input Data X Solve CFD
Models

Generated Target
Data Y C ,C( )d l

Fig. 5. Data generation.

ANN’s unknown weights and biases are usually randomly initialized and then iteratively adjusted to
minimize the loss function (mean squared error MSE ). Once the loss function is determined, the partial
derivatives of the loss function concerning the learnable parameters ω and b can be obtained according
to the chain derivation rule. The parameters will be updated via the error backpropagation algorithm
and optimization algorithm Adam [18] based on the partial derivatives to achieve the minimum value
of the loss function. This paper uses the Tensorflow [19] to build and train the ANN.

4. Shape optimization under uncertainty

4.1. Deterministic shape optimization problem

A shape optimization problem based on deterministic simulation minimizes a cost function J , which
depends on a shape Γ and state variables W . In parametric approaches, the Γ shape is represented by a
small number of variables of form x = (xi)i=1,...,n, which are considered optimization variables. Such a
parametric approach allows replacing the initial infinite-dimensional shape optimization problem with
a finite number n of unknowns. The state variables W (i.e., the physical flow fields) implicitly depend
on the shape variables through the state equations R(x,W (x,a)) = 0 (R are the Euler equations (3)
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in this study), where a = (aj)j=1,...,m represents some parameters that define the operating conditions
such as the Mach number, the angle of attack, etc. Finally, a general parametric form optimization
problem can be expressed as follows:

{

Minimize
x∈Rn

J (x,W (x,a)),

Subject to C(x,W (x,a)) 6 0,
(8)

where C represents additional constraints (physical or geometric).

Design variable or
environmental variable x

Objective
function ( )f x

Initial design

Robust design

Single point design

Fig. 6. Robust design and single-point design [4].

An optimal shape generally does not consider the
uncertainty or variability of certain parameters or
data that will affect the performance of the shape
in a real situation. Therefore, it is important to
achieve stability of the solution, as a deterministic
optimization approach (single-point method) could
tend towards an “over-optimization” problem (Fig-
ure 6), giving high performance in correspondence
with the shape point, but giving poor off-design char-
acteristics.

Referring to Figure 6, the function has an abso-
lute extreme and a relative extreme corresponding to
the value x1 and x2 of the parameter x. In this case,
the operational uncertainties could be represented by
the tolerance 2×∆x of the input parameter x. A deterministic optimization, which does not consider
fluctuations, will detect the point x1. On the contrary, the robust optimization will detect the point
x2, which corresponds to the highest value of stability of the function in the tolerance range x.

We now mention robust shape methods that consider fluctuating (uncertain) parameters.

4.2. Robustness methods

Deb and Gupta [20] extended an existing approach that finds robust solutions for single-objective
optimization problems to multi-objective with dynamic parameters. They defined the average effective
objective functions instead of the original objective functions.

Consider a general optimization problem of the following type:

Minimize J (x),
Subject to x ∈ S,

(9)

where S is the feasible search space.
To avoid obtaining the global optimal solutions which are very sensitive to such a variable pertur-

bation in their neighborhood, the following two approaches are defined for robust optimization by Deb
and Gupta [20].

Definition 1 (Robust solution of type I). For the minimization of an objective function J (x),
a solution x∗ is called a robust solution of type I, if it is the global minimum of the mean effective

function J eff(x) defined with respect to a δ-neighborhood as follows:

Minimize J eff(x) = 1
|Bδ(x)|

∫

y∈Bδ(x)
J (y) dy,

Subject to x ∈ S,
(10)

where Bδ(x) is the δ-neighborhood of the solution x and |Bδ(x)| is the hypervolume of the neighbor-

hood.

In this method, a mean function measure (J eff) is optimized instead of the objective function(s).
To use it in practice, robust optimization starts by creating a set of random candidate solutions for a
particular problem. Each candidate solution is evaluated by the average of the H solutions generated
around it. The solutions are chosen randomly (or in a structured way, such as the Latin hypercube
method) from the hypervolume (Bδ(x)) of radius δ around the solutions. Where δ denotes the maximum
possible level of perturbation.
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Deb and Gupta [20] proposed a new and more practical approach that allows a user to define
the desired degree of robustness in a problem. This approach consists of calculating the normalized
difference in values between the value of the effective mean function (J eff) and the original function J
itself and declaring a solution to be robust if the normalized difference is below a chosen threshold (δ).

Definition 2 (Robust solution of type II). For the minimization of an objective function J (x),
a solution x∗ is called a robust solution of type II, if it is the global minimum of the mean effective

function J eff(x) defined with respect to a δ-neighborhood as follows:

Minimize J (x),

Subject to

∥

∥J eff(x)−J (x)
∥

∥

‖J (x)‖
6 η,

x ∈ S,

with δ ∈ [0, 1]. The operator ‖ · ‖ can be any suitable norm measure.

5. Robust aerodynamic optimization of an aircraft wing

5.1. Description of the problem

The test case corresponds to the shape optimization of a realistic 3D aircraft wing for a transonic
regime (Euler equations (3)). The nominal operating conditions are defined by the free-flow Mach
number M∞ = 0.83 and the incidence α = 2. The initial shape of the wing is shown in Figures 7.

a

NACA0012

Root max height
Tip max height112 mm

122 mm346 mm

2700 mm

b

Trailing edge length
7587 mm

Leading edge length
8009 mm

Tip chord
1057 mm

Root chord
2911 mm

Wing semi-span
7540 mm

6 Trailing edge sweep angleo

20   Leading edge sweep angleo

c

Fig. 7. The initial shape of the wing.

In this case study, we use the FFD technique described in section 2.1, where a box surrounding the
wing was defined to reduce its dimensions without cutting the wing surface. Then, the dimensional
space was explored by considering 12 control point variables x, the shape variables defined for the
optimization problem.

Twelve parameters (xi) represent the displacement of the control points of the FFD parametrization:

— A lattice is built around the initial shape of the wing with a margin of (1500, 3000, 0) on the
(X,Y,Z) axes respectively, following the shape of the wing along the Z axis.
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— The margin (1500, 3000, 0) allows a part of the CFD mesh to be included in addition to the wing
in the deformation zone.

— The lattice is of order (3, 1, 4). The total number of control points is thus 4× 2× 5 = 40.
— Only the inner points are movable and only in the Y direction, the aim being to optimize the airfoil.

This reduces the freedom of the lattice to twelve degrees of freedom.
— Thus the number of parameters of the shape by this FFD parametrization process is 12 (see Fig-

ure 8).
— As mentioned, the deformation includes a part of the CFD mesh in addition to the wing (see

Figure 8). To ensure good mesh quality the displacement of the control points is therefore restricted
to the interval [−200, 200]12 . The design space is therefore [−200, 200]12 .

Fig. 8. Parametrization by FFD and meshing. Fig. 9. Unstructured mesh.

Spatial discretization. Our solver uses an unstructured mesh of 31124 nodes and 173445 tetra-
hedral elements generated around the wing, including a refined area near the shock (see Figure 9). The
flow is simulated by solving the compressible Euler equations (3) with a finite volume method. As far
as the flow domain Ω is discretized by tetrahedriations.

0 200 400 600 800 1000

Epoch

E
rr

or

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 Loss
Validation loss

Fig. 10. Learning curve.

Surrogate model. The Surrogate model is a neu-
ral network with Swich as the activation function and
considering the Adam optimization algorithm. The
model was trained by 1000 samples generated using
the quasi-stochastic LHS (Latin Hypercube Sampling)
method. Each sample contains 12 parametrization vari-
ables, which vary in [−200, 200]. In addition to Mach
number M which varies in [0.83 ± 0.04] and incidence α
which varies in [2±0.04]. For each point, an analysis was
performed to evaluate the aerodynamic coefficient, drag
CD and lift CL. A neural network with three hidden lay-
ers containing 18 neurons was trained to predict CD and
CL. Eighty percent is used to train the model and 20%
for validation. Figure 10 shows the error evaluation as a function of the number of epochs (training
curve). Figure 11 represents the effective values of the objective function evaluated by the high-fidelity
model at the predicted optima and shows the relative errors.

5.2. Test case 1

The problem of optimizing the shape of an aerofoil is usually formulated in terms of reducing drag
under the constraints of maximum lift. Drag and lift are generally represented by their correspond-
ing coefficients CD and CL. Typically, the set of variables used to optimize the airfoil performance
corresponding to the Mach number M , the incidence α, and the control variables are the 12 FFD
parameters defined on [−200, 200]. Thus we define the objective function as the drag-to-lift ratio of a
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Fig. 11. Error and fitness in terms of incidence and Mach.

profile (Drag-To-Lift-Ratio), the function of problem (11). The optimization problem is formulated as
follows:

Minimize J (x,M,α) =
CD(θ)/CD0

(θ)

CL0
(θ)/CL0

(θ) ,

Subject to x ∈ [−200, 200]12 ,
(11)

where CD0
and CL0

are respectively the drag and lift of the initial configuration and θ = (x,M,α).

5.2.1. Deterministic optimization
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Fig. 12. Convergence curve of the PSO algorithm.

We first solve the deterministic optimization prob-
lem (12), with fixed operating conditions. Thus,
the Mach number is assumed to have its nominal
value M∞ = 0.83, and the incidence has the value
α = 2◦. The convergence curve of the PSO algo-
rithm is shown in Figure 12. As can be seen from
the figure, the PSO algorithm obtains the optimal
result at the 1000th iteration.

We now analyze the variation of the values of
the Drag-To-Lift-Ratio function of problem (11)
for the optimal shape found when the Mach num-
ber and the Incidence vary around its nominal val-
ues. Figure 13a compares the values of the Drag-

to-lift-Ratio function for different Mach numbers and fixed Incidence equal 2◦. Figure 13b compares
the Drag-To-Lift-Ratio values for different Incidence values, and the fixed Mach number equals 0.83.
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Fig. 13. Variation of the Drag-To-Lift-Ratio function as a function of incidence and mach number for the
optimal shape.
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As can be seen from Figure 13a, the Drag-To-Lift-Ratio function increases sharply when the Mach
number exceeds its nominal value. Similarly, it can be observed from Figure 13b that the Drag-To-
Lift-Ratio function decreases significantly when the incidence value is lower than its nominal value.

5.2.2. Robust optimization

In this section, we study the propagation of uncertainty. We distinguish three cases, first, we consider
the uncertainty relative to the Mach number M around the nominal value 0.38 and the variable
Incidence fixed equal to the nominal value 2. In the second case, the Mach number M is fixed at the
nominal value 0.38, and the incidence variable α is considered uncertain. In the last case. Both the
Mach number M and the incidence α are considered uncertain variables.
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Fig. 14. The variation of the Drag-To-Lift-Ratio function as a function of Mach number and incidence for
robust type I, II, and optimal shapes.

In the robust type I method, the effective objective function J eff is optimized, with each solution
evaluated on a ball of radius δ = 0.04 by averaging h = 100 points generated using the Latin hypercube
strategy. On the other hand, for the robust type II approach, the J function is optimized at the nominal
point, with a constraint used to confirm the robustness of the solution. The PSO algorithm is employed
to solve both type I and type II problems with η = 0.1.

In Figure 14, the values of the Drag-To-Lift-Ratio function are plotted for various Mach and inci-
dence values, representing the robust type I and II forms as well as the optimal form (blue, orange,
and green). It can be observed that the robust type I solution and the deterministic solution exhibit
some similarities. However, the robust type II solution demonstrates perfect stability, highlighting its
robustness. Although the robust solution may be suboptimal at certain design points compared to
the deterministic optimal solution, as depicted in Figure 14d , it offers greater stability in dealing with
off-design variations.

In Figure 15, we illustrate the isobaric pressure lines on the wing surfaces for the initial shape and
the robust type II shapes in three cases. It is evident that the optimization process has effectively
reduced the presence of shock waves. Indeed, the flow appears smoother in Figures 15b, 15c, and 15d
when compared to the initial shape 15a, where higher pressure gradients are observed.
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a The initial shape b Robust shape type II: first case

c Robust shape type II: second case d Robust shape type II: third case

Fig. 15. Pressure fields and isobars on the surface of the robust shapes type II and the initial shape.

5.3. Test case 2
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Fig. 16. The Pareto optimal solution.

In this test case, we consider two objective functions, J1 =
CD(θ)
CD0

(θ) and J2 =
(

1− CL(θ)
CL0

(θ

)2
. The drag will be reduced

when minimizing J1 automatically. On the other hand,
minimizing J2 means maximizing the lift. Therefore, the
goal of aerodynamic profile optimization is achieved,

Minimize J (x,M,α) =
(

CD(θ)
CD0

(θ) ,
(

1− CL(θ)
CL0

(θ

)2 )

,

Subject to x ∈ [−200, 200]12 .
(12)

We first solve the deterministic optimization prob-
lem (12), with fixed operating conditions. Thus, the Mach
number is assumed to have its nominal value M∞ = 0.83,
and the incidence has the value α = 2◦. The NSGA-II

algorithm solves the problem with a population of 100 individuals over 200 generations. The Pareto
front obtained is represented in Figure 16.

Robust optimization. The robust type I solution is obtained by solving the problem using the
NSGA2 algorithm with a population of 100 individuals over 200 generations. The resulting Pareto front
is shown in Figure 17a. On the other hand, for the robust type II solution, we use the same NSGA2
algorithm with a population of 100 individuals over 200 generations, with η = 0.8. The resulting
Pareto front is shown in Figure 17.

Comparison between the robust Deb solutions and the deterministic solutions. As soon
as we obtain the optimal solutions illustrated by two Figures 17, we compute the values of Cd/Cd0 and
(1−Cl/Cl0)

2 evaluated in these solutions. As a result, the graph of the Pareto edges given in Figure 18
is drawn.
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Fig. 17. Pareto robust fronts.
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Fig. 18. The Pareto fronts.

By examining the Pareto fronts of Figure 18,
we notice that the approach of Deb more par-
ticularly the approach type II reduced the solu-
tions. And this is consistent with the result of
Deb [20].

6. Conclusion

In this study, we addressed the problem of aero-
dynamic shape optimization with uncertain op-
erating conditions. We based our approach on
two robust optimization methods proposed by
Deb, which utilize different procedures (type I
and II). These proposed approaches were ap-
plied to the robust aerodynamic design opti-
mization of transonic wings, with uncertain Mach number and angle of attack in two test cases.

The FFD method was used to parameterize the wing control profiles, and an ANN model was
established with design variables as inputs and aerodynamic parameters as outputs. The ANN-based
surrogate model was trained using the Adam algorithm and validated by predicting lift and drag coef-
ficients of aerodynamic profiles in a test group, with results indicating that the ANN-based surrogate
model can provide more accurate predictions.

We integrated Deb’s type I and II approaches into the deterministic PSO and NSGA-II algorithms
to improve the convergence rate and global search capability. These new algorithms are R-PSO and
R-NSGA-II, with “R” indicating robustness. The robust optimizations of the transonic wing were
performed using the R-PSO and R-NSGA-II frameworks with the ANN-based surrogate model. Our
study found that the used approaches are quite effective in considering uncertainties in an automated
shape optimization procedure.
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Надiйна оптимiзацiя форми за допомогою сурогатного
моделювання крила лiтака на основi штучних нейронних мереж

Муссауї З.1, Карафi Ю.1, Абу Ель Маджд Б.1,2

1Лабораторiя LMSA, факультет природничих наук, Унiверситет Мохаммеда V у Рабатi, Марокко
2Унiверситет Лiлля, 59655 Вiльньов-д’Аск, Францiя

Оптимiзацiя аеродинамiчної форми є дуже активною областю дослiджень, яка сти-
кається з надзвичайно складними задачами обчислювальної гiдродинамiки (CFD),
оптимiзацiї з диференцiальними рiвняннями у частинних похiдних (PDE) як обме-
женнями та вiдповiдним обробленням невизначеностей. Це включає в себе розробку
надiйних методологiй проектування, якi є обчислювально ефективними, зберiгаю-
чи бажаний рiвень точностi в процесi оптимiзацiї. У статтi розглядаються проблеми
оптимiзацiї аеродинамiчної форми, пов’язанi з невизначеними умовами експлуата-
цiї. Пiсля огляду можливих пiдходiв до врахування невизначеностей модель штучної
нейронної мережi (ANN) використовується для апроксимацiї аеродинамiчних коефi-
цiєнтiв при змiнi умов експлуатацiї. Використовуються надiйнi пiдходи до вирiшення
задач надiйної оптимiзацiї на основi детермiнованих вимiрювань, натхненнi роботою
Деба [Deb K., Gupta H. Introducing robustness in multi-objective optimization. KanGAL
Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology,
Kanpur, India (2004)]. Перша процедура є прямим розширенням методики, що вико-
ристовується для одноцiльової оптимiзацiї. Другий — бiльш практичний пiдхiд, що
дозволяє користувачевi визначити бажаний ступiнь надiйностi проблеми. Цi пiдходи
були перевiренi та пiдтвердженi у випадку оптимiзацiї профiлю крила лiтака в тран-
сзвуковому режимi з урахуванням двох невизначених змiнних: числа Маха та кута
падiння.

Ключовi слова: оптимiзацiя форми; аеродинамiчний аналiз; деформацiя вiльної

форми; сурогатна модель; моделювання невизначеностi; штучнi нейроннi мережi.
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