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This paper presents a machine-learning-based approach that enables simultaneous surro-
gate modeling and dimension reduction and applies it to aerodynamic parametric shape
optimization. Aerodynamic shape optimization is a crucial process in various industries,
including aerospace, automotive, and renewable energy. It involves iteratively improving
the properties of a system by evaluating an objective function and driving its minimization
or maximization using an optimization algorithm. However, the evaluation of aerodynamic
objective functions requires computationally expensive operations, such as solving complex
fluid dynamics equations and calculating performance metrics like lift and drag coefficients.
This computational cost becomes particularly burdensome when derivative-free optimiza-
tion algorithms need to evaluate numerous samples per iteration. Additionally, when the
design space dimension is high, the efficiency and effectiveness of the optimization process
decrease. To address these challenges, the paper proposes combining surrogate model-
ing and dimension reduction. Surrogate modeling constructs a reduced order model that
approximates the coefficients of interest in a cost-effective manner, while dimension re-
duction identifies the most relevant design space dimensions using techniques like Proper
Orthogonal Decomposition. The paper suggests an integrative approach that employs
Artificial Neural Networks (ANN) and Unsupervised Learning, specifically AutoEncoder
networks, to simultaneously build a surrogate model and reduce the problem dimension.
This technique is applied to optimize the shape of an airplane wing aerofoil under trans-
sonic flight conditions. The wing shape is parameterized using Free Form Deformation
(FFD). The paper demonstrates that the suggested approach enables rapid and effective
shape optimization.
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1. Introduction

Aerodynamic Shape Optimisation (ASO) is an essential and effective aspect of automating the design
process, traditionally carried out using Computational Fluid Dynamics (CFD) simulations and manual
design modifications. With powerful high-performance computing resources, CFD-based ASO has been
applied to the design of wings [1], tails and other components, resulting in considerably reduced aircraft
development cycle time and enhanced design performance. However, the efficiency of aerodynamic
shape design optimization is mainly affected by three fundamental aspects: the dimensionality of
the geometric design space, the cost of the aerodynamic analysis, and the convergence rate of the
optimization algorithm. Recently, advanced Machine Learning (ML) methods have shown the potential
to efficiently parameterize the aerodynamic shape, accurately predict aerodynamic performance with
low computational cost, and innovate ASO workflows. With this new approach to aerodynamic shape
optimization, promising results in terms of efficiency are expected.

Machine learning (ML) has emerged as an effective means of reducing the cost of aerodynamic
evaluations in CFD-based aerodynamic shape optimization, which is largely dominated by the cost
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of evaluating aerodynamic objective and constraint functions (and their derivatives with respect to
design variables). Although CFD analysis provides rich information about the flow variables in the
computational domain, ASO is typically based on a few aerodynamic performance metrics, such as
lift and drag coefficients. As a result, modeling the aerodynamic coefficients is of great interest in
aerodynamic design. A simple prediction function is fitted between the shape design variables and
the aerodynamic coefficients using training data generated by high-fidelity aerodynamic analyses to
accomplish this modeling. This prediction model is commonly referred to as the Surrogate Model (SM)
or metamodel. Traditional ML approaches, such as kriging [2], have been successfully used in various
engineering fields. Variations of kriging, such as co-kriging and hierarchical kriging [3], were developed
to take advantage of multi-fidelity simulations. Boutemedjet and all [4] proposed the aerodynamic
design procedure of a mini unmanned aerial vehicle involving genetic algorithms and artificial neural
networks for wing preliminary computation. Liao and all [5] introduced multi-fidelity convolutional
neural networks as a surrogate model for aerodynamic optimization. Jun TAO et al. [6] used a PCA-
DBN substitution model based on Principal Component Analysis (PCA) and Deep Belief Network
(DBN). PCA-DBN is applied to robust aerodynamic design optimizations of a natural laminar flow
(NLF) airfoil and a transonic wing.

Compared to supervised learning, which relies on labeled training data, unsupervised learning
operates with unlabeled training data. Unsupervised ML algorithms analyze the data patterns and
automatically set up learning rules. Dimensionality reduction is a common unsupervised ML technique,
allowing for the handling of problems with a large number of variables by coding the information
into a reduced number of parameters or latent variables. Examples of such techniques are Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD). Artificial neural networks,
such as Auto-Encoders (AEs), can represent nonlinear functions and efficiently encode information in
a few latent variables while minimizing the reconstruction error during decoding. Variational Auto-
Encoders (VAEs) improve on classic autoencoders by ensuring that the latent variables follow smooth
statistical distributions, typically normal distributions. Kou et al. [7] used autoencoders to improve
the optimization of airfoils where a multidisciplinary objective function combined aerodynamic and
aeroacoustic targets. [8] used a convolutional-autoencoder to compress the CFD solution data into
latent vectors (encodings) which had a much lower dimensionality than the original CFD solution
space. An additional deep feedforward neural network (DNN) model was used to predict the latent
vectors using the CFD model input boundary conditions. [9] used a convolutional neural network in
conjunction with a generative adversarial network (GAN) to produce a one-to-one mapping from the
parameters defining the aerofoil geometry to the resultant 2D pressure field.

In the present study, we propose an integrated deep learning approach that combines Auto-Encoders
(AE) with the Surrogate model (SM) to predict the aerodynamic performance, specifically the drag and
lift coefficients. The first step involves using the AE to establish a relationship between the reduced
dimension variables. By incorporating the surrogate model, we can efficiently explore the parameter
space to optimize aerodynamic shape. The surrogate model provides a quick estimation of aerodynamic
performance for different shapes, guiding the search for optimal configurations. This model-assisted
optimization approach accelerates the optimization process while maintaining reasonable prediction
accuracy, which is particularly beneficial in domains where CFD simulations are computationally de-
manding in terms of time and resources.

The structure of this paper is as follows: in Section 2, we present the master points generation
process for aerodynamic analysis. Section 3 introduces the proposed AE-SM model for reducing both
the order and dimension. Section 4 showcases numerical results that demonstrate the application of
the approach from Section 3 in the aerodynamic optimization of a transonic aircraft wing.

2. Master points generation

The data generation process for aerodynamic analysis is a critical step in designing efficient and high-
performance aircraft. The process involves collecting representative data points, also called master
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points, that will be used to build the aerodynamic models. These master points are the input and
output values used to create the model, and they represent the design space of the aircraft.

To collect these master points, space-filling sampling techniques are employed, which enable the
reduction of the number of collected points while maximizing the coverage of the design space. This
technique ensures that the collected data points are as diverse and representative as possible. The
collected points set comprises both the input parameters X and the output data Y . The steps of the
aerodynamic data generation, are shown in Figure 1.

Aerodynamic
Configuration

Parameterization
and DOE

Mesh Generation
and CFD

Establishment of
Aerodynamic Database

Fig. 1. Aerodynamic Data Generation.

— Parameterization and design of experiments (DoE): Specify the parameter space by defining the
input variables and their range. Generate samples based on DoE theory.

— Mesh generation and CFD simulation: set up the flow field computational block and meshing.
Obtain the aerodynamic data at the sample points by conducting CFD simulations.

— Establishment of aerodynamic database preparation: organize the design space and its correspond-
ing aerodynamic characteristics into a database.

The process of choosing samples from the design space is called the Design of Experiment (DoE).
Latin hypercube Sampling (LHS) is used as a DoE method to establish the distribution of input
variables. LHS is a method of approximate random sampling from a multivariate parameter distribution
belonging to hierarchical sampling technology and is often used in DoE. Samples xij obtained using
the LHS method can be expressed as follow:

xij =
πi
j + U i

j

N
, 1 6 j 6 d, 1 6 i 6 N, (1)
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Fig. 2. Schematic of 5 sample points se-
lected by Latin hypercube sampling.

where i denotes the ith sample, j denotes the jth design
variable, U denotes a random number in [0, 1], and j de-
notes a random permutation in {0, 1, . . . , N − 1}. An ex-
ample in which the LHS method selects sample points in
a DoE problem of two-dimensional input is shown in Fig-
ure 2.

The training data is composed of CFD analyses on
samples chosen from the design space to compute the aero-
dynamic force coefficients, such as lift coefficient, and drag
coefficient (with a given range for the free-stream Mach
number and angle of attack). In the CFD analysis of each
wing sample, we use the finite volume method to solve the
compressible Euler’s equations.

3. Surrogate modeling and dimension reduction

3.1. Surrogate modeling (SM)

In aerodynamic shape optimization, surrogate modeling plays a crucial role. The High Fidelity Model
(HFM) based on Computational Fluid Dynamics (CFD) has related inputs and outputs:

Y = F(X). (2)

The objective of surrogate modeling is to substitute the computationally expensive high fidelity
model, denoted as F , with a Low Fidelity Model (LFM) f . This LFM is constructed based on
observed parameters X and their corresponding outputs Y = F(X), allowing it to approximate the
output Ŷ = f(X) for new and unseen parameters X. By employing surrogate modeling techniques,
such as meta-models, the time-consuming calculations involved in solving the Navier Stokes Equations
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in Computational Fluid Dynamics (CFD) simulations can be mitigated. The surrogate model entails
the creation of a mathematical approximation model, utilizing previously collected sample data, to
make predictions of the objective function values at untested points. The framework of the surrogate
model is depicted in Figure 3.
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Numerical simulation
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Construction of
surrogate model
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Fig. 3. Surrogate model framework.

In other words, surrogate modeling aims to build a simplified model that can predict the outputs
of the HFM using only the input parameters. To achieve this, machine learning techniques such as
regression are used to capture the relationship between the input parameters and the corresponding
outputs of the HFM. The surrogate model can then predict outputs for new parameter combinations,
saving time and resources by avoiding costly computational simulations each time. The most common
surrogate modeling methods include Artificial Neural Networks (ANNs) [10], Multi-Layer Perceptron
(MLP) [11], Recurrent neural networks (RNN) [11], Bayesian Neural Network (BNN) [12], and Gaussian
Processes (GPs) [13].

3.2. Reducing both the order and dimension of the HFM

In the context of the High Fidelity Model (HFM), reducing both the order and the dimension of the
Low Fidelity Model (LFM) can lead to significant computational savings. One way to achieve this is
to introduce the third variable Z and additional model g to relate the variables X to Z,

{

X = g(Z),
y = f(X).

(3)

The first approach involves introducing a model g that relates the reduced dimension variable X to Z,
and then using a surrogate modeling technique to approximate the relation between Y and X. This
approach is known as dimension reduction, and it involves the use of techniques such as Principal
Component Analysis (PCA) or Proper Orthogonal Decomposition (POD) to obtain g, and a surrogate
modeling technique f .

Alternatively, the second approach involves introducing two supplementary models g1 and g2 (4)
that relate X and Y to Z. In this approach, the variable X is related to Z through g1, while Y is
related to Z through g2,

{

X = g1(Z),
y = g2(Z),

with y = f(X). (4)

g1 can be thought of as a decoder that restitutes the parameters from the reduced space and g2 as
a mapper that maps lower dimension parameters to outputs. The relation between X and Y is then
approximated using the HFM.
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Fig. 4. Schematic of model with y = f(X).

The proposed model is composed of two main parts,
the first being an AE Auto-Encoder technique and the
other being a substitution model prediction block. In this
section, we present the theory behind this model with
three different architectures. The surrogate model that
aims at predicting the aerodynamic performance (drag
and lift coefficients in our case) is also presented. Next,
we describe in detail the custom training loop in which
the AE and the SM are trained simultaneously.

3.2.1. Auto-Encoder (AE) model

An Auto-Encoder (AE) is a generative model used in unsupervised learning. The AE aims to reproduce
its input while mapping the data to a latent space. It is commonly employed for dimensionality
reduction by training the network to disregard irrelevant data.

An AE (Auto-Encoder) is a model that aims to represent an observation in the latent space without
the explicit use of probability distribution. It consists of an Encoder E, which generates a compressed
representation of each attribute of the latent state, and a Decoder D that attempts to reconstruct
the input data from this latent representation. Unlike the VAE (Variational Autoencoder), the AE
does not directly model the probabilistic distribution of the data in the latent space.

The main components of an AE involve taking input data X and using a neural encoding network
to generate an output vector of dimension d, where d represents the dimension of the latent space.
Specifically, the encoder produces a vector of Z values in R

d×1, which represents the latent space
associated with the input data:

Z = E(X). (5)
The sampled Z point is then used as the input of the decoder neural network, which aims to reconstruct
the input data:

X̂ = D(Z).

The loss function of an AE typically consists of a reconstruction term, which is calculated on the
final layer of the network, and it serves to ensure efficient encoding and decoding of the input data.

The reconstruction term measures the discrepancy between the original input data and the recon-
structed output produced by the decoder. Mathematically, it can be represented as

L(X, X̂) =
∥

∥X − X̂
∥

∥

2

2
. (6)

The AE is trained by optimizing this reconstruction loss, aiming to minimize the discrepancy between
the original data and the reconstructed data. By minimizing the reconstruction loss, the AE learns to
extract meaningful and informative representations in the latent space that can effectively capture the
salient features of the input data.

Regularization term. The representation of the AE in the latent space involves determining the
bounds or ranges for the intervals of Z. For instance, if we observe that the latent points are widely
scattered and lack organization, we can apply regularization techniques to impose structure on these
latent points.

By regularizing the latent points, we aim to encourage certain desirable properties such as smooth-
ness, sparsity, or clustering in the latent space. This can be achieved through the addition of regular-
ization terms to the loss function of the AE during training. Common regularization techniques include
L1 or L2 regularization, which introduce penalties based on the magnitude of the latent variables. In
this paper, we employ the regularization constraint of equation (7) to ensure that the latent design
space is the hyper-volume of radius 1,

R1(Z) = min
(

|1− ‖Z‖∞|, 0
)

. (7)

With the above regularization term, the loss function of AE becomes:

L(X, X̂) =
∥

∥X − X̂
∥

∥

2

2
+ λ1R1(Z), (8)

where λ1 controls the weight of the regularization term.
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3.2.2. Multi-model auto-encoder surrogate (AE-SM)

The proposed multi-model integrates two models, AE and SM, to capture both the geometry and the
relationship between geometry and aerodynamic performance. The simplest and most straightforward
approach is to merge both the input X and output Y into the same dataset and process them using
an Auto-Encoder, as illustrated in Figure 5. Firstly, the encoder reduces the dimension, and then the
decoder (D-SM) restores the original dimension and predicts the desired outputs based on the restored
full-dimensional parameters.

X

Z
Encoder

E( )
Decoder
D-SM( )

Y

X

Y

Fig. 5. Architecture of AE-SM.

The AE and SM models are trained concurrently, with the objective of minimizing a combined loss
function that incorporates the loss function for the AE (8) and the Mean Square Error (MSE) for the
SM,

L(X̂, Ŷ ) =
∥

∥X − X̂
∥

∥

2

2
+ λ1R1(Z) +

∥

∥Y − Ŷ
∥

∥

2

2
. (9)

It is important to note that training the AE and SM simultaneously has a significant semantic
impact compared to training the models separately. Specifically, the encoder influences all three
losses (9). Consequently, the encoder is also trained to minimize the ‖Y − Ŷ ‖22 loss, which would
otherwise only depend on the surrogate model. On the other hand, the SM is trained using a latent
space that gradually takes shape during the simultaneous AE training. This compels the encoder
to adapt the latent representation to the desired features of the SM, providing regularization and
preventing overfitting. While this approach may lead to a higher reconstruction loss ‖X − X̂‖22, it
ultimately results in improved overall performance.

Some critical aspects of this last model can be evidenced, for example, X and Y are decoupled. This
raises equations about the soundness of this approach since the last part of equation (3) (i.e. Y = f(X))
is not enforced in the loss function. To drive the model training considering the correlation between
X and Y one can think of a correlation metric such as Pearson correlation ρ given hereafter:

ρX,Y =
cov(X,Y )

σXσY
=

E [(X − µX)(Y − µY )]

σXσY
. (10)

A good model is expected to reproduce the same correlation as between X̂ and Ŷ , thus minimizing
the gap between ρX,Y and ρ

X̂,Ŷ
. We subtract two correlation matrices to obtain the correlation gap:

ρ = ρX,Y − ρ
X̂,Ŷ

.

The cost function is defined as the sum of the absolute values of all elements in the “gap” matrix.
Alternatively, you can normalize the cost function by dividing the sum by the total number of

elements in the “gap” matrix. This makes the cost function independent on the matrix size:

R2(ρ) =

∑

ij |gapij |

n
,

where n is the total number of elements in the “gap” matrix.
The complete expression of this loss function is

L(X̂, Ŷ ) =
∥

∥X − X̂
∥

∥

2

2
+ λ1R1(Z) +

∥

∥Y − Ŷ
∥

∥

2

2
+ λ2R2(ρ). (11)

This loss function consists of multiple components. The first term measures the squared Euclidean dis-
tance between the input data X and their corresponding predictions X̂, quantifying the reconstruction
error. The second term, λ1R1(Z), represents a regularization term applied to the latent space Z with a
regularization parameter λ. The third term, ‖Y − Ŷ ‖22, calculates the mean squared error between the
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actual performance data Y and their predicted values Ŷ . This term captures the deviation between
the predicted and true performance, allowing the model to learn and improve its predictions. Finally,
the last term, represented as λ2R2(ρ), denotes a measure of the discrepancy or gap between the output
correlation predictions.

By minimizing this loss function during the training process, the model aims to simultaneously
reduce the reconstruction error, promote structured latent representations through regularization, im-
prove performance predictions, and minimize the gap in correlation predictions.

4. Numerical results

4.1. Airfoil shape design optimization

The objective of a deterministic simulation-based shape optimization problem is to minimize a cost
function J , which relies on shape and state variables. In parametric approaches, the shape is de-
scribed using a limited set of variables (x) that serve as optimization variables. This parametric
approach effectively transforms the initial shape optimization problem, which has an infinite number
of dimensions, into a problem with a finite number of unknowns. The state variables (i.e., the physical
flow fields), governed by equations such as the Euler equations in this study, implicitly depend on the
shape variables.

When optimizing the shape of an airfoil, the primary goal is typically to reduce drag while main-
taining a minimum lift, subject to certain constraints. Drag and lift are commonly quantified using
their respective coefficients, CD and CL. In practical scenarios, the airfoil configuration must be opti-
mized to minimize the drag-to-lift ratio (CD/CL) at the design point. The optimization problem can
be formulated as

Minimize
x∈Rn

[

J (x, a) ≡
CD/CD0

CL/CL0

(x, a)

]

, (12)

where CD0
and CL0

are respectively the drag and lift of the initial configuration, x represents the
variable used to optimize the performance of the airfoil, and a represents parameters that define
operating conditions such as the Mach number, the angle of attack, etc.

Test case description. This case study focuses on the shape optimization of a realistic 3D
aircraft wing in a transonic regime, the state equations are the Euler equations. The nominal operating
conditions are characterized by free-flow Mach number of M∞ = 0.83 and an incidence angle of α = 2.
The initial shape of the wing is depicted in Figure 6.

Fig. 6. The initial shape of the wing. Fig. 7. Parametrization by FFD.

To perform the optimization, the FFD (Free-Form Deformation [14]) technique is employed [15,16],
which involves enclosing the wing within a box to reduce its dimensions without altering the wing
surface. This dimensional reduction is achieved by considering twelve control point variables (x)
as shape variables for the optimization problem. These twelve parameters (xi) correspond to the
displacement of the control points in the FFD parametrization.

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 154–165 (2024)



Simultaneous surrogate modeling and dimension reduction using unsupervised learning. . . . 161

Fig. 8. Unstructured mesh.

The lattice surrounding the initial wing shape is
constructed with a margin of (1500, 3000, 0) along the
(X,Y,Z) axes, following the wing’s shape along the Z
axis. This margin allows for the inclusion of a portion
of the CFD (Computational Fluid Dynamics) mesh in the
deformation zone. The lattice is of order (3, 1, 4), resulting
in a total of forty control points. Only the inner points
are movable, restricted to the Y direction, with the objec-
tive of optimizing the airfoil. This constraint reduces the
degrees of freedom to twelve.

Consequently, the FFD parametrization process de-
fines twelve shape parameters (see Figure 7). The dis-
placement of the control points is limited to the range of
[−200, 200]12 to ensure proper mesh quality.

An unstructured mesh consisting of 31 124 nodes and
173 445 tetrahedral elements is generated around the wing
for spatial discretization. This mesh incorporates a refined
area near the shock as illustrated in Figure 8. The flow is simulated by solving the compressible
Euler equations using a finite volume method. The tetrahedral elements discretize the flow domain
appropriately.

4.2. Reducing order and dimension of airfoil shape through AE-SM

The AE-SM network model, introduced in our study, is designed to address both the order and dimen-
sion problems by integrating two main components: an autoencoder (AE) technique and a surrogate
model (SM). This combined approach offers an effective solution. To implement the AE-SM network,
we utilized the architecture described in section 3.2.

To train these three models, we created a dataset comprising 1000 samples using the quasi-stochastic
Latin Hypercube Sampling (LHS) method, as explained in section (2). Each sample consisted of
12 Free-Form Deformation (FFD) parameter variables, with values ranging from −200 to 200. For
each data point in the dataset, we conducted an analysis to evaluate the aerodynamic coefficients,
specifically the drag (CD) and lift (CL). This dataset served as the basis for training the AE-SM
models, enabling us to accurately capture the relationships between the FFD parameters and the
corresponding aerodynamic coefficients.

The architectures of the encoder and decoder (D-SM) utilized in the AE-SM model are shown in
Table 1. We fix the AE-SM parameters, λ1 = 1, λ2 = 1, and the dimension of the latent variables
d = 6. The encoder consists of an input layer that concatenates X and Y data, a dense layer with
(14 + 2) × 10 = 140 neurons using the swish activation function, and an output layer of size 6. The
decoder includes an input layer that accepts patterns of size 6, and two dense layers that reduce the
latent space to the size 12 and 2 of the input space. The design of the encoding and decoding layers
was based on an empirical approach and prior knowledge of deep learning models.

The architectures of the encoder and decoder (D-SM) utilized in the AE-SM model are shown in
Table 1. We fixed the AE-SM parameters, with λ set to 1, and the latent variable Z is limited to the
range of [−1, 1]6, where the dimension is set to 6.

Table 1. The AE-SM model architecture includes an Encoder and a Decoder (D-SM).

Layers Encoder (E) Decoder (D-SM)

L1 Concatenate [12, 2] Dense (125 neurons), Swish.
L2 Dense (140 neurons), Swish. Dense (200 neurons), Swish.
L3 Dense (6 neurons), Linear. Dense (12 neurons), Linear.
L4 Dense (2 neurons), Linear.
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The encoder consists of an input layer that concatenates the X and Y data, followed by a dense
layer with (14 + 2) × 10 = 140 neurons using the swish activation function. The output layer of the
encoder has a size of 6. The decoder comprises an input layer that accepts patterns of size 6, and two
dense layers that reduce the latent space to sizes 12 and 2, respectively, matching the input space. The
design of the encoding and decoding layers was based on an empirical approach and prior knowledge
of deep learning models.

To assess the accuracy of the trained model, we divided the dataset into 1000 samples for training
and the remaining 500 samples for testing the model’s generalization capability. Figure 9 shows the
error evaluation as a function of the number of epochs (training curve).
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o
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Fig. 9. Learning curve.

Given specific input data, we calculated the Normalized Root Mean Square Error (NRMSE) of the
corresponding output pattern as follows:

NRMSE =
‖X − X̂‖

‖X̂‖
× 100.

The average NRMSE over all the points in the test set was 2.96% for the SM and 10.2% for the AE.
This result demonstrates that the model can accurately predict the aerodynamic performance (drag
and lift coefficients) for a given profile with an accuracy of 97.04%.

4.3. Airfoil optimization

We present the proposed framework for optimizing airfoil shape in transonic flight regimes. The
problem formulation for optimization is given by (13). The objective is to minimize the Drag-to-lift
ratio CD/CL with respect to the latent variables Z. The flight conditions are defined by Mach number
of M∞ = 0.83 and an incidence angle of α = 2,

Minimize
Z∈[−1,1]6

CD/CD0

CL/CL0

. (13)

Once the mathematical formulation of the optimization problem is established (refer to (13)), an effi-
cient optimization algorithm is employed to enhance the aerodynamic performance of a parameterized
geometry under one or more crucial design conditions. There are primarily two categories of opti-
mization methods. The first category consists of local optimization methods, such as the descent
method, which iteratively optimizes the objective functions and constraints using gradients. This ap-
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proach is widely utilized due to its rapid convergence. The second category encompasses gradient-free
optimization methods that rely solely on the objective function values, without utilizing derivatives.
Examples include the differential evolution (DE) algorithms, the particle swarm optimization (PSO)
algorithms [17], and the NSGA-II algorithm.

In this particular case, the PSO algorithm is utilized to solve the problem defined in (13). The
convergence curve of the PSO algorithm is shown in Figure 10.

0 500 1000 1500 2000
Iteration

Optimization convergence

D
ra

g
 t

o
 L

if
t 

ra
ti
o

0.8600.860

0.865

0.870

0.875

0.880

0.8 09

0.885

Fig. 10. Convergence curve of the PSO algorithm.

Fig. 11. Pressure field on the surface of the wing and isobars, of the optimal wing compared
to the initial wing in the top-left corner.
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In Figure 11, we present the isobaric pressure contours on the wing surfaces for both the initial
shape and the optimized shape. It is evident that the flow exhibits greater smoothness in the left figure
as opposed to the initial shape, which displays higher pressure gradients. This observation implies that
the optimization process has successfully mitigated the intensity of the shock wave.

5. Conclusion

In this work, we demonstrated how unsupervised learning, specifically AutoEncoders, can be utilized
to simultaneously construct a surrogate model and reduce the dimensionality of a design problem. The
resulting model serves as a reliable predictor of both the design variables and their corresponding coef-
ficients, as evidenced by our study on the shape FFD parameters, Lift and Drag coefficients. Moreover,
we showcased the effectiveness of this model in facilitating rapid and efficient shape optimization. The
AutoEncoder architecture employed in this study is the most commonly used and widely adopted. In
future research, we plan to experiment with and compare alternative architectures, such as a sequential
layout of the encoder, decoder, and surrogate model, or a parallel arrangement of the decoder and the
surrogate network following an encoder.
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Одночасне сурогатне моделювання та зменшення вимiрностi за
допомогою неконтрольованого навчання. Застосування до

параметричної оптимiзацiї форми крила

Карафi Ю.1, Муссауї З.1, Абу Ель Маджд Б.1,2

1Лабораторiя LMSA, факультет природничих наук, Унiверситет Мохаммеда V у Рабатi, Марокко
2Унiверситет Лiлля, 59655 Вiльньов-д’Аск, Францiя

У статтi представлено пiдхiд, який заснований на машинному навчаннi, що забезпечує
одночасне сурогатне моделювання та зменшення вимiрностi та застосовує його для оп-
тимiзацiї аеродинамiчної параметричної форми. Оптимiзацiя аеродинамiчної форми
є вирiшальним процесом у рiзних галузях промисловостi, включаючи аерокосмiчну,
автомобiльну та вiдновлювану енергетику. Це передбачає iтерацiйне покращення вла-
стивостей системи шляхом оцiнки цiльової функцiї та її мiнiмiзацiї або максимiзацiї
за допомогою алгоритму оптимiзацiї. Однак оцiнка аеродинамiчних цiльових функ-
цiй вимагає виконання обчислювальних затратних операцiй, таких як розв’язування
складних рiвнянь гiдродинамiки та обчислення показникiв ефективностi, таких як
коефiцiєнти пiдйомної сили та лобового опору. Ця обчислювальна вартiсть стає особ-
ливо обтяжливою, коли алгоритми оптимiзацiї без похiдних повиннi оцiнювати чис-
леннi вибiрки за iтерацiю. Крiм того, коли вимiрнiсть простору проєктування велика,
ефективнiсть i результативнiсть процесу оптимiзацiї знижуються. Щоб вирiшити цi
проблеми, у статтi пропонується поєднати сурогатне моделювання та зменшення ви-
мiрностi. Сурогатне моделювання створює модель зменшеного порядку, яка наближає
шуканi коефiцiєнти економiчно ефективним способом, тодi як зменшення вимiрностi
визначає найбiльш важливi вимiри проєктного простору за допомогою таких методiв,
як правильна ортогональна декомпозицiя. У статтi пропонується iнтегративний пiд-
хiд, який використовує штучнi нейроннi мережi (ANN) i неконтрольоване навчання,
зокрема мережi AutoEncoder, щоб одночасно побудувати сурогатну модель i змен-
шити вимiр задачi. Ця методика застосовується для оптимiзацiї форми аерокрила
лiтака в умовах трансзвукового польоту. Форма крила параметризована за допомо-
гою деформацiї вiльної форми (FFD). У статтi показано, що запропонований пiдхiд
дозволяє швидко та ефективно оптимiзувати форму.

Ключовi слова: машинне навчання; AutoEncoder; деформацiя вiльної форми;

штучнi нейроннi мережi; оптимiзацiя форми; аеродинамiчний аналiз.
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