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ALGORITHM FOR DETERMINING INCLUSION PARAMETERS
IN SOLVING INVERSE PROBLEMS OF GEOELECTRICAL
EXPLORATION USING THE PROFILING METHOD

The paper aims to develop an algorithm for recognizing the physical and geometric parameters of inclusion,
using indirect methods of boundary, near-boundary, and partially-boundary elements based on the data of the
potential field. Methodology. The direct and inverse two-dimensional problems of the potential theory
concerning geophysics were solved when modeling the earth's crust with a piecewise-homogeneous half-plane
composed of a containing medium and inclusion that are an ideal contact. To construct the integral
representation of the solution of the direct problem, a special fundamental solution for the half-plane (Green's
function) of Laplace's equation, which automatically satisfies the zero-boundary condition of the second kind on
the day surface, and a fundamental solution for inclusion were used. To find the intensities of unknown sources
introduced in boundary, near-boundary, or partially-boundary elements, the collocation technique was used, i.e.
the conditions of ideal contact are satisfied in the middle of each boundary element. After solving the obtained
SLAE, the unknown potential in the medium and inclusion and the flow through their boundaries are found,
considering that the medium and inclusion are considered as completely independent domains. Results. The
computational experiment for the task of electric prospecting with a constant artificial field using the resistance
method, in particular, electrical profiling, was carried out, while focusing on the physical and geometric interpretation
of the data. Initial approximations for the electrical conductivity of the inclusion, its center of mass, orientation and
dimensions are determined by the nature of the change in apparent resistivity. To solve the inverse problem two
cascades of iterations are organized: the first one is to specify the location of the local heterogeneity and its
approximate dimensions, the second one is to specify its shape and orientation in space. At the same time, the
minimization of the functional considered on the section of the boundary, where an excess of boundary conditions is
set, is carried out. Originality. The method of boundary integral equations is shown to be effective for constructing
numerical solutions of direct and inverse problems of potential theory in a piecewise homogeneous half-plane, using
indirect methods of boundary, near-boundary, and partial-boundary elements as variants. Practical significance. The
proposed approach for solving the inverse problem of electrical exploration with direct current is effective because it
allows fora step-by-step, "cascade" recognition of the shape, size, orientation, and electrical conductivity of the
inclusion. We follow the principle of not using all the details of the model and not attempting to recognize parameters
with little effect on the result, especially with imprecise initial approximations.

Key words: mathematical modeling, potential theory, direct problem, inverse problem, indirect near-
boundary element method, partially-boundary elements, piecewise homogeneous medium, electrical profiling.

Introduction various types of tectonic plates (oceanic, continental
or intracontinental) are characterized by electrically
conductive structures. The nature of such deep regional
anomalies is not explained necessarily by partial melting,
they can be the result of transportation of fluids and,

The study of the earth's interior by geological and
geophysical methods provides a basis for elucidating
fundamental questions of geodynamic processes, which
primarily relate to understanding how deep high- ‘
temperature fluids are formed and penetrate the earth's ~ accordingly, ore components from the crust and mantle
crust. They are an important source for all subsequent during tectonomagmatic activation. The hydrogen and
processes of formation of carbon, sulfide, and iron- ~ carbon present In the earth's crust and upper maptle
containing metasomatites, as well as the formation of ~ Can shift within the contact zones of geological
ore and oil and gas deposits. As is known, fluids formations of various ages. This movement leads to an
penetrate through the lithosphere by draining deep  increase in electrical conductivity, allowing us to identify
zones of high permeability, which often correspond to  areas that are likely to contain valuable mineral deposits.
deep faults. Studies show that areas of articulation of ~ Articulation areas of tectonic plates of different ages
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are studied experimentally within the area magnetotelluric
and magnetovariation methods [Nikolaev et al., 2019].

When studying geodynamic processes in the
carth's crust, generated by natural or artificial force
fields of various physical nature, numerous physical
and mechanical effects that appear on its surface as the
result of changes in its structure are analyzed. The
analysis includes the search for non-homogeneous
objects such as falls, cavities, various caves, landslides,
hydrocarbon or ore deposits. It also involves localizating
and determining the physical properties of these
objects, as well as monitoring the territories where
they are located. This is one of the tasks of geophysical
research methods, particularly, electrical prospecting.

The advantages of methods that utilize natural and
artificial potential fields (gravitational, magnetic, electric,
thermal, filtering) to detect object heterogeneity include
the ease of implementation in field or experimental
conditions and their economic feasibility. These methods
do not require special expensive equipment. At the
same time, the mathematical models of steady-state
processes used in these methods consist of Laplace or
Poisson equations supplemented with boundary
conditions of the first, second, or third kind and mixed,
and are well studied [Lv, et al., 2023; Milson, Eriksen,
2011; Pierre van Baal, 2014; Qu, et al., 2015; Zhdanov,
2009].

Isolating and detecting physical anomalies is a
complex mathematical and technical problem, since
they are present against a backdrop of irregular and
often turbulent natural and man-made disturbances,
such as variations in the upper layers of the earth,
uneven terrain, space, atmospheric, climatic, and
industrial factors. At the same time, interference of fields
of various nature, which is both a simple superposition of
field parameters and their complex nonlinear interactions,
is always observed. Anomalies manifested as changes
in the physical characteristics of the object. For
example, the gravitational field depends on the change
in the density of rocks, the magnetic field - on the
magnetic susceptibility and residual magnetization of
its components, the electrical field depends on specific
electrical resistance, and temperature depends onthermal
properties, particularly thermal conductivity.

Analytical or numerical solutions of direct problems
involve determining the parameters of the physical
field based on known physical characteristics, size,
and shape of the components of the object. These
solutions, can be found unambiguously, although
sometimes they may require using complex algorithms
[Brebbia, et al., 2012; Foks, et al., 2014; Zhang, et al.,
2013]. At the same time, the same distribution of
physical field parameters can correspond to different
ratios of physical characteristics and sizes of the object's
components. In other words, finding a solution to the
inverse problem of mathematical physics (determining
the dimensions of the components of the object and
their physical characteristics according to the observed

field) is much more difficult due to its ambiguity
[Mikheeva, et al., 2023; Mukanova & Modin, 2018].

The interpretation of gravity, magnetic, and electrical
anomalies has many common features. This is explained
by the similarity of the basic laws of interaction of
gravitational, magnetic, and electric masses (Newton's,
Coulomb's, and Ohm's laws), which led to the
establishment of mathematical relationships between
gravitational, magnetic, and electric potentials. However,
despite similarities, there are also differences in the
nature and morphology of gravitational, magnetic, and
electrical anomalies [Zhou, et al., 2023; Li, et al.,
2022]. Anomalous objects in gravity prospecting are
unipolar, that is, they form either positive or negative
anomalies. Anomaly objects in magnetic exploration
are bipolar, since each magnetized domain can form
both positive and negative anomalies. Therefore, the
structure of the anomalous magnetic field is more
complex than that of the gravitational one. It is further
complicated by the different length of the domains in
the direction of magnetization, its different angle, the
presence of induction and residual rock magnetization.
The form and intensity of anomalies, and therefore the
effectiveness of electrical profiling (EP) as a method
of electrical prospecting with direct current, depend on
the various natural and technical factors. These include
the appropriate method selection, prospecting depth,
the observation system, the intensity of the primary
(feed) field and its polarization. This involves the
direction of the electric field vector relative to the
extension of objects. For example, when this vector
direction coincides with the extension of objects,
maximum secondary magnetic fields are induced in
conductive domains. And when it is perpendicular to
the extension, maximum conductive anomalies of
secondary electric fields are observed. The methodology,
or the theory of rational interpretation, is the same for
all electrical prospecting methods. However, the
geological-geophysical interpretation, as well as the
field of applications, are different. The physical-
mathematical quantitative interpretation of these
methods, which boils down to solving the inverse
problem, is well developed only for one-dimensional
(horizontally layered) models of environments.
Interpretation of electric fields with the help of modern
computers is carried out with greater accuracy,
objectivity, and speed. Among the many algorithms
for solving the inverse problem of electrical prospecting,
algorithms of various selection options have become
the most popular.

Quantitative interpretation of EP data is a complex
and imprecise process. Therefore, it makes sense to
talk only about semi-quantitative interpretation, whose
main task is to determine the epicenter of the
reconnaissance object, that is, the area under which it is
located, as well as to assess the shape and depth of its
location, sometimes dimensions, physical and geological
nature of anomalies. It begins with the selection of
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physical and geological models that can be used to
approximate exploration objects. They include media
contacts, thick and thin layers, isometric (spherical),
elongated (lens-like, cylinder-like) objects, etc. Solving
direct and especially inverse problems by mathematical
and physical modeling methods for the listed models
is more difficult than for vertical electrical soundings.
The effectiveness of EP is determined not only by the
presence of favorable geoelectrical conditions and a
successful choice of method but also by a sufficient
amount of additional geological and geophysical
information. In particular, depending on the physical
properties of the rocks, it is advisable to carry out EP
together with magnetic exploration, thermal exploration,
or radiometry. To interpret the results of the EP, a
priori data, geological sections, and maps are needed,
which, in turn, are refined after the EP is carried out.

Purpose

The paper aims to develop an algorithm for
recognizing the physical and geometric parameters of
inclusion, using indirect methods of boundary, near-
boundary, and partially-boundary elements based on
the data of the potential field.

Methodology
Problem formulation

Let it be necessary to determine the geometric
parameters of inclusion according to the nature of
the flow of the potential field on the electrically
insulated boundary 6Q ={(x,x,):~ < x <, x, =0}
of the half-plane, which occupies the domain
Q=R> ={(x.xp):—0<x <0, —0<x, <o) in the
Cartesian coordinate system (x;,x,). We assume that
the flow of the potential field is equal to zero everywhere
on 9Q, except points A (x;4,0)and B (x;5,0), where
current sources are located, feeding electrodes with
known constant intensities g, and gp, respectively.
In addition, there is a section 002, < 0Q on which we
additionally know the value of the potential u.

We assume that the potential u(x) of the stationary

electric field inside the half-plane satisfies the equation

0? o2
o=~ 242 Z42)
=—g0(x)xg(x), XEQO, (1)

everywhere except an inclusion Q; (©; < Q). In the
domain €; the environment is homogeneous, but
different from that in which the operator P(uq(x))

operates, therefore, the process in it is described by the
equation
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2 2
P(ul(x)) =Au1(x) =0 [5 Ml(X) N 0 ul(x)] o,

2 2
axl aX'Z
xel). 2)
Here o, (s =0,1) is a constant physical characteristic
(conductivity coefficient), y,(x) is a characteristic
function of the domain Q, Q) , x=(x,x,).

For the mathematical formulation of the excess of
boundary conditions, we consider that a boundary
condition of the second kind is set on the boundary
0Q, and a boundary condition of the first kind is also

set on the section 0Q :
() _
an(x)
uy(x) =up(x), x €€y, 4)
where n(x) = (n(x),n,(x)) is a uniquely defined

Go(¥)=—0 0, xedQ=00% UaQ,, (3)

external unit normal to the boundary 0Qy = 0Q U Q) .

The choice of sources on the boundary of the half-
plane in the form gg(x)=gy(,)+go(Ep), Where
80(84)=284/0¢,80(5p) =285/ 5, ensures  the
fulfillment of condition (3).

Note that there must be an empty set for the
correct statement of direct problems of mathematical

physics 0Q, . When solving inverse problems, the
presence of 0 is mandatory, and the quality and
reliability of the result is higher when the area o0
is smaller, that is, it is the best one when the condition

a0® = is fulfilled.
The ideal contact conditions are set at the media
interface 0Q;:

ug(x) =u(x),
L G an)
“on(x)  on(x)’

Geometrical information about the inclusion €

S an . (5)

will be given in the form of N pairs of points with

coordinates (xlln,xén) and (x12,1,x§n)(n=l,...,N) and

0Q, will be modeled by N linear segments I', , which

n»

will be set as follows:

. 1 2
(xln >X2n ) el’,, if x1,, = x1,01 (M) + x1,,02(M) ,

1 2
Xop = Xp®1 (1) +X2,02(17),

where (xlln,x;n) and (xlzn,xgn) are the coordinates

of the extreme points of the "o

P =0.5(n-1)n, @) =05(m+1)n, n is a
one-dimensional coordinate, which changes from -1 to

segment I
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1 when the point (xln,xzn) moves from (xlln,x;n) to

(xlzn,xgn) along the segment I', . Since the closed

broken line which simulates 0€Q; is continuous, we

will require that

2 1 2 1
(xln = X(n+1) ) > (in = xz(,1+1)) when n<N and
2 1 2 1
(xln =x11), (x2n = x21) when n=N.

Finding unknown values xlln,xén , xlzn,xgn will
be carried out in stages. First, we will write down the
algorithm for solving the direct problem of the potential
theory, then we will consider them known, and then
we will build a method for recognizing the physical
and geometric parameters of the inclusion €);.

Algorithm for solving the direct problem
of electric prospecting with direct current using
electric profiling

Let us find the solutions of the problem (1)-(3), (5)
(0Q), =) using indirect boundary element method

(BEM) [Brebbia, et al., 2012], near-boundary element
method (NBEM) [Zhuravchak, 2019), Zhuravchak,
Zabrodska, 2021] and partially-boundary element
method (PBEM) [Zhuravchak, Zabrodska, 2021]. Note
that among the listed methods, NBEM is the most
accurate. However, it takes more time than BEM, while
the partially-boundary element method achieves higher
accuracy than BEM in a shorter time than NBEM. To
construct the solution, we will use a special fundamental
solution for the half-plane (Green's function) of the
Laplace equation (1), which automatically satisfies the
zero boundary condition (3):

Eon(r)=Eq(r)+Eo(r),
the fundamental solution for the plane in the inclusion:

E, ()= E(x.8)=— 1

In|r/nl,

A

and their normal derivatives:

Fon (1) =Fo(r) + Fo (),
2 n(x; —¢&;
F,(r)= Fs(x,é)=632’(’—2’) .
i=1 2rr
Here &;,&, is a coordinate system that coincides

with x;,x,,
N
V'Z\/(xl ~E)2 (0 +8y)7

is used to improve the accuracy of

constant 7,

calculations.
Step 1. In the BEM, we divide the boundary o€

into boundary elements I'y, so that U‘If:l Iy, =09,

Ly Nl =J,v#q, v,qzl,_V.WhenusingNBEM
and PBEM, we introduce external near-boundary
domains G5 =By /Q where By < R12 , Qg By
0B, "oQ, =< . In NBEM we divide each near-
boundary domain G, into elements G, so that each
boundary element I'g,, corresponds to two near-boundary
elements: Gy, : G, Ny =TIy, G,NGy, =D,
vEg, v,q= I,_V, UVV:1 G,, =G, . We enter partially-
boundary elements as follows. In each near-boundary

domain G, we introduce curves Gi,,Gy, so that the
beginning of G;v is the beginning of I'y, and the
beginning of G, is the end of I'y,. The union

G, ul'y, UGH = G{v is called a partially-boundary
element [Zhuravchak, Zabrodska, 2021]. We introduce
fictitious sources of unknown intensity g’,(£) on each
of the discrete elements vy, =[Iy,, G, G{v] .

Step 2. We approximate the intensities g!,(€) of

unknown sources by constants d!, and move from

differential equations (1), (2) to their integral
representations, that is, we write down the potentials
and their derivatives along the normal in the form:

4
uf(x)=3 dg, I Egp(x,8)dy, (&) +

v=l YOV

+Eo5 (%,€ 4)80(E4) + Eqp(x,E5)g0(Ep)

,
u (x)=3 dj, J E (x,§)dyy, (€) +C1, (6)
v=l Y1y

ou (x)
Qg (x)= —Gy gll = _0‘5X$vdgv +

,
+2. dg, I Fop (x.&)dvo, (&) +

v=1 Yov
+Fop (x,€ 4)80(E4) + Fop(x,E5)80(ER) -

ou! (x)
L= —0.5¢] d) +

T(r)— _
q; (x)=-0; on

14
+> d}, [ B (x.8)dv, (8), )

v=l Yiv
where !, (x)=1, xeTy,, x5, (x)=0, xeT,,.
Note that except for 0Q; (6) exactly satisfies (1),

(2) in Q. This fact frees us from constructing a grid
in Q.
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Step 3. To find the intensities of unknown sources,
we will use the collocation technique, that is, we will
satisfy the ideal contact conditions in the middle of
each boundary element. Substituting (6), (7) into (5)
and adding the condition of equality to zero in R12 the
sum of all sources at infinity, we obtain a system of
linear algebraic equations (SLAE) for finding unknown

values d, and C;:

.
> dl, [ Eou(x".8)dvo, () -

v=1 Yor
y
=Y df, [ By )dy, (8)-G =
v=l Ylv
=—Eo,(x,€,4)g0(E4) —Eop(x,E5)g0(Ep)

x" eoQy, (8)

V
~05xh g+ 2 df, [ Fon(x.E)dvo, (8)+

v=l Yov

[ B (x".8)dn, (8)-

Ylv

=—Fop(x,§4)80(E4) —Fon(x,Ep)g0(Ep)
x" eoqy, )

,
>odl, | dy,(&)+C=0.
v=l Y1v

w

y
+0.5%] d, =D d,
v=l

(10)

Step 4. After finding the unknown values d{, and

C; as solutions of SLAE (8)-(10), we calculate the
desired potential in the medium and inclusion and the
flow through their boundaries using formulas (6), (7),
since the medium and inclusion are now considered as
completely independent domains.

Solving the inverse problem of electrical
prospecting with direct current using electrical

profiling
Geometric information about 0Q; is stored in the

form of N quadruplets of numbers xlln,xén , xlzn,xgn .

If we now take into account that they are rather
difficult to include in integral representations (6), (7),
as well as the fact that we will use iterative procedures
to find them, then it is advisable to reduce the number
of unknown values at the first stages of recognition.
To do this, we will introduce additional dependencies

between xll n,x% "> xlzn,x%n and limit ourselves to the

case of N=4 for the inclusion.
We organize the iterative recognition algorithm as
follows.
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Step 1. According to the nature of the change in
apparent resistivity p’ = kT“ ul (xpr) —ud (xy)| we
determine the sign and initial approximations for Ac,
(x10,%29) — the center of mass of the inclusion,
modeled by a rectangle with sides 2/ , 2/, or a
rhombus with the same diagonals of length 2/, . We
determine exactly x;, by the extremum of the curve p”

and x,y and [, (or /; , [, ) — approximately by that

curve integrated within the limits between its
inflection points. Here

D T U .

lnl"AM lnrAN lanM 1anN
is the coefficient of device ABMN,

2 2
_ c D c D
oy = (3 =) (x5 =)

The apparent resistivity p)k of a homogeneous half-

plane is equal to unity at each point.
Step 2. We put 6; =0, +Ac, considering that
oy 1is known.

Step 3. We organize the first cascade of iterations
to clarify the location of local heterogeneity and its
approximate dimensions.

1. We model 0€; with a rectangle or a thombus

with the coordinates of the vertices:
1 1 2 2
xp =X10 —hxy =x0 —ly, X =X +h x5 =x30 — 1,
3 3 4 4
X =x0+h5 =xp0+h, X =x19 =l x5 = X0 +1p,
1 1 2 2
or x; =xj9 —lo X = X0, Xj =Xj9.%3 = X0 ~lp,
P =X10 o3 = Xa0, X = X105 =0+l (11
X =x19+lpx5 =x0, X =X70.% =X +ly. (11)
2. For the selected o; according to the algorithm

of solving of the direct problem, described above, we
calculate the potential ug (x) by formula (6) for
xe€0Qy.

3. Minimize the functional

1= [ Juy(x) —u ()| dOy, (x),
oy,

(12)

allowing variation only xyp /o (or /; , ).

4. We fix x{o,l({ (or 1/ , l{ ), which correspond to

the found minimum of the functional (12), and refine
the electrical conductivity using minimization (12),

denote it by Glf .

5. As a result, using formulas similar to (11), we
will find the specified coordinates of the vertices of a

rectangle or rhombus (xlnf , x;f ), n=1,...,.4.
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Step 4. We organize the second cascade of iterations
to clarify the shape and orientation of inclusion in the
space.

1. We will rotate the rectangle or rhombus found
in step 3 around its center of mass, simultaneously
scaling along the axes. To do this, we enter three new
parameters ¢, s),S, and calculate the new coordinates

of the vertices of the rectangle or rhombus:
X" = (xlnf — X)) €OS @y —(ng - x{o)sin(po +X05
x5 = (xlnf —X)0)singy + (x;f - x{o)cos @ + x{o,

nr

xlnc =x 81 +1=51)x0,

X =, +(l=s))xfy. (13)
2. We minimize the functional (12) by variation
©p,51,8, and fix (p({ ,slf ,s{ , which correspond to the
found minimum.
3. For constants xlo,x{(),l({ (or lf, l{ ), (p({,slf,s{,
S

we specify the electrical conductivity oj

f2

minimization (12), denote it by o

using

Step 5. The found values x;",x},, serve instead of

variables xlnf , ng in formulas (13) for further refinement
in the iterative process of minimization (12) at
constant G{ 2 Note that it is sometimes advisable to

repeat the last two steps several times.

The results

The direct and inverse problems of electrical
prospecting with direct current using electrical profiling
were solved by the indirect method of near-boundary
elements for A=(-25, 0) and B=(25,0), g, =-0.5 and

gp = 0.5 respectively. The current strength / and the
electrical conductivity o of the geological environment
Qo were assumed to be equal to one. The distance

between the receiving electrodes was chosen as MN =
0.1AB. They are moved along the line (-25, 25) with a
step of 0.1.

Having some information about the research area
from previous experience, we determine the initial
approximations and the possible range of parameters
we need to find. The asymmetry of the graph shows
that the inclusion is placed at angles to the horizontal
axis other than 0 and 90 degrees. Initial approximations
for Ac (deviation from the electrical conductivity of

the medium) and (x19xy) (center of mass of the

inclusion) are determined by the apparent resistivity
graph (Fig. 1).

Its convexity shows that the electrical conductivity
of the inclusion is lower than the electrical conductivity
of the medium. The apparent resistance is the inverse

value of the electrical conductivity, so we put Ac as
negative. The concavity on the graph shows that the
electrical conductivity of the inclusion is greater than
the electrical conductivity of the medium, so we

assume Ac is positive. The coordinate xj, is
determined exactly by the extremum of the curve p?,

and x,y and [, (or /; , [, ) — approximately by that
curve integrated within the limits between its inflection
points. The horizontal size of the inclusion / (or /)

will be smaller than the distance between the minima
of the curve by about 50%. The vertical size and depth
of the center of mass /# will be proportional to the
height of the maximum on the graph.

,0m*

130720

125 — ¢=

1.20 — ¢=n/4 |
115 / \ — ¢=n2 |
110 — ¢=3n/4
1.05 — ¢=0 -

1.00
0.95
0.90

=15 -10 =5 5

=
o
-
o

-2.0

-35 I>< 4

-5.0 .2&

-6.5

Fig. 1. Graphs of apparent resistivity for the
selection of initial approximations

First, let us solve the inverse problem for inclusion
in the form of a rectangle with sides 2/ =4, 2/, =2,
placed horizontally, that is, its longer side is parallel to
the day surface. Having found the initial approximations,
we calculate the values of the functional with two fixed
parameters (o; and /) and two variables. We find the
range of values of variable parameters around which the
functional is minimal. Fig. 2 presents isolines that
show that there are areas where the values of the
functional are the smallest, and they cover possible

pairs of problem solutions: the desired values /; are

in the range from 1 to 2.1, and /, —from 0.2 to 2.

Fig. 3 shows the step-by-step selection of inclusion
parameters, based on the minimization of the functional
(12), from o7 =0.05, #=3.6 to the optimal o, =0.2, h=4.

Next, we will find the solution of the inverse
problem for inclusion in the form of a square with side

2 [y =2, parallel to the day surface. To demonstrate the

refinement of the orientation of inclusion in the space,
a rhombus is chosen as an initial approximation.

Fig. 4 shows the step-by-step selection of inclusion
parameters, based on the minimization of the functional
(12), from o©;=0.1, ¢y =0 to the optimal o;=0.2,

o=m/2 at h=4.
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or lesser electrical conductivity compared to the main
environment. At the same time, the "center of mass"
of the inclusion is almost always identified by the
extremum (minimum or maximum) of the curve,
but in the case of two inclusions located close to
each other, two inclusions may be identified as one.
The change in the shape of the inclusion is slightly
reflected in the curve. The distance between the
"centers of mass" of two inclusions of the same
conductivity placed horizontally is identified by the
distance between the maxima on the apparent
resistance curves. The obtained data serve as initial
approximations when solving inverse problems.
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Fig. 3. Graphs of step-by-step finding
of the inclusion-rectangle parameters, a rectangle
is chosen as the initial approximation

Numerical results showed that during profiling
with a conventional gradient device, it is possible to
approximately determine the length of the inclusion
(its beginning and end) by a coordinate parallel to the
day surface. This involves taking into account the
distance between the inflection points of the apparent
resistivity curve. Additionally, it allows forthe
determination of whether the inclusion has a greater
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Fig. 4. Graphs of step-by-step finding of the
inclusion-square parameters, a trhombus is chosen
as the initial approximation

It should be noted that two inclusions placed one
under the other (vertically) are identified as one in the
profiling method. To distinguish them, as well as to
determine the depth of their occurrence, it is necessary
to use vertical electrical sensing.

The software implementation of the proposed
approaches was carried out in the modern, powerful
Python programming language, as it is freely distributed
and has a large number of additional libraries, including
NumPy, SciPy, Matplotlib, etc. Their use significantly
speeds up and facilitates the writing of programs
that allow you to visually control the processes of
forming a geometric research domain, a discrete
model, and the computing process in general. Based
on the proposed approach, automated computer
modules were created in Python for solving direct
and inverse problems of the theory of electrical
exploration with direct current.

In further research, we plan to expand the proposed
algorithm for solving the inverse problem using the
profiling method for two, three, or more inclusions
placed horizontally with the same and different electrical
conductivity, as well as develop an algorithm for
recognizing two inclusions placed one under the other
by the method of vertical electrical sensing.
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Originality

The method of boundary integral equations is
shown to be effective for constructing numerical
solutions of direct and inverse problems of potential
theory in a piecewise homogeneous half-plane, using
indirect methods of boundary, near-boundary, and
partial-boundary elements as variants.

Practical significance

The proposed approach for solving the inverse
problem of electrical exploration with direct current is
effective because it allows fora step-by-step, "cascade"
recognition of the shape, size, orientation, and electrical
conductivity of the inclusion. We follow the principle of
not using all the details of the model and not attempting
to recognize parameters with little effect on the result,
especially with imprecise initial approximations.

Conclusions

1. It is possible to analytically solve a direct
problem, and, accordingly, to give methods of
interpretation only for sources of disturbances in the
form of simple geometric models (sphere, cylinder,
ledge, etc.). Approximation of real geological objects
by such models for a number of cases is conditional
because geological objects of ideal shape are rare.
However, even depth estimation plays a significant
role in geology. In more complex cases, the problem
is solved by numerical methods, which must be highly
accurate, reliable, and fast. NBEM has proven itself
well in solving direct and inverse problems of electric
exploration with direct current for inclusions of non-
canonical form.

2. For the interpretation and geological explanation
of anomalies, it is necessary to study in detail the
physical characteristics of the rocks, the patterns of
their change both in horizontal directions and with
depth. Anomalous physical characteristics of geological
objects should be greater the deeper they lie. The
efficiency of electric prospecting increases if the
physical characteristics of the investigated geological
object are significantly different from the physical
characteristics of the host rocks.

3. According to the principle of superposition of
fields, the effects caused by various geological factors
are added. Total anomalies of the first derivative of
the potential are determined by the deep structure of
the earth's crust and its different strengths, the relief of
the surface of the crystalline foundation and its
petrographic composition, the heterogeneity of the
structure of layers of sedimentary rocks and the presence
of certain structures and minerals within them.
Theoretically, there is a functional dependence between
geological factors and anomalies of the potential field,
but in practice, only a correlation dependence is most
often established. The main method of geological

interpretation of exploration data is the comparison of
maps and graphs of the potential field with geological
maps. A correlation can be observed between potential
field anomalies and known geological anomalies,
which indicates the identity of these geological formations
and the identified source of the field disturbance. If
there is no such connection, the field is caused by
deeper and unknown geological formations. The
accuracy of the geological interpretation of potential
field anomalies depends on the degree of consideration
of the noted features.

4. In case the physical characteristics and shape of
the objects are unknown, the mathematical solution of
the inverse problem of electrical reconnaissance is
ambiguous and the quantitative interpretation gives
several options. To increase the reliability of the
interpretation, it is worth applying a complex of various
geophysical methods of analysis and technologies. This
helps to obtain the most reliable data on the geological
structure of the research area. In turn, the creation of
geoinformative systems will make it possible to fully
apply all known technologies to effectively interpret
geophysical data. The software makes it possible to
increase the degree of automation of the measurement
process with the direct formation of a working project,
ensuring the promptness of obtaining information
about the effective and quantitative characteristics of
the studied environment.
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AJITOPUTM BU3HAYEHHS [TAPAMETPIB BKIIFOUEHHA ITPU PO3B’A3YBAHHI OBEPHEHUX
3AZ1IAY I'EOEJIEKTPOPO3BIAKN METOZAOM ITPO®IIFOBAHH A

Mera. 3 BUKOPHUCTaHHSAM HETPSIMAX METOJIB I'PAaHUYHUX, TPUTPAHUIHUX Ta YACTKOBO-TPAHUYHUX CJIICMEHTIB
noOy/AyBaTH aJrOPUTM pO3Mi3HaBaHHS (I3UYHUX Ta TEOMETPHYHMX IIapaMeTpiB BKJIIOYCHHS 32 JaHUMHU
MOTEHINaTbHOTO oA, MeTtomuka. Po3B’s3aH0 TipsiMy Ta 0OepHEHY MBOBHMIPHI 3a[adi TEOPil MOTEHIliary CTO-
COBHO I'e0()i3MKH NPHU MOJEIIOBaHHI 36MHOT KOPH HEOJHOPIAHOIO MiBIUIONIMHOIO, CKIAAECHOIO 3 BMIITYBaJILHOTO
CepeIoBHUINA Ta BKIIOYECHHS, SIKi Mepe0yBaloTh B iZlealbHOMY KOHTaKTi. J{1s moOy10BH iHTErpaqbHOTO HOAAHHS
PO3B’sI3Ky MpsiMOi 3a/1aui BUKOPUCTAHO CIIEIiajdbHUI (yHIaMEHTaIbHUI PO3B’ 30K AJIs1 MIBILIOMKMHY ((DYHKIIIIO
I'pina) piBHAHHSA Jlamnaca, SKuif aBTOMaTUYHO 33/I0BOJIBHSE HYNIBOBY KPalilOBY YMOBY JPYTOTo pPOAy Ha JECHHIH
MOBEPXHi, Ta (yHIaMEHTAILHUN PO3B’SA30K ISl BKIIOYEHHS. {7 3HAXOJKEHHS iHTEHCHMBHOCTEH HEBITOMMX
JUKEpell, YBeJCHUX Y TPaHUYHMX, MPUTPAHUYHUX UM YaCTKOBO-TPAHWYHUX €JIEMEHTaX, BUKOPHCTaHO KOJIOKa-
[iffHy METOIUKY, TOOTO YMOBH i/1€aJIbHOTO KOHTAKTy 3aJJ0BOJICHO y CEpeiNHI KOXKHOTO IPAaHUYHOTO €JIEMEHTA.
[Micns po3B’si3aHHS OTPUMAHOI CHCTEMHU IIHIHHHUX anreOpaidyHUX pPIBHSAHH 3HAWIICHO ITYKAHWW TOTCHIIAN Yy
CepeIOBUIII Ta BKIIOYCHHI Ta MOTIK Yepe3 iXHi MeXi, BpaXOBYIOUH, IO CEPEIOBHIIC i BKIFOUYCHHS PO3TIISTHYTO
K IUIKOM He3aliexxHi oOmacti. Pesynmpratu. [IpoBemeHHS OOYHCIIOBATBHOTO EKCIEPUMEHTY 3MIHCHEHO LIS
3a1a4i eJIEKTPOPO3BIAKY MOCTIHUM IUTYYHUM IIOJIEM METOJIOM OIIOpY, 30KpeMa, EIEeKTPONpOUIIOBaHHAM, IPH
IBOMY 30CEpe/DKEHO yBary Ha (i3WYHIA Ta TEOMETPHYHIH iHTepHpeTamii JaHUX. 3a XapakTepoM 3MiHH
MO3IPHOTO OMOPY BH3HAYEHO MOYATKOBI HAOIMKEHHS JJISl €IEKTPOTPOBITHOCTI BKIIOUEHHS, HOTO IEHTPY Mac,
opieHTaIlii Ta po3mipiB. Jlnsg po3B’s3aHHA 00epHEHOI 3a/1a4i OPraHi30BaHO JBa KacKaJu iTepariii: mepuiuii nms
YTOYHEHHS MICIIe3HaXO/PKEHHSI JIOKAbHOI HEOJHOPIMHOCTI Ta ii MpHOIM3HUX pO3MIpiB, APYruil — s
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yTouHeHHS 11 popmu Ta opieHTamii B npocTtopi. [Ipu mpoMy mpoBeneHo MiHIMIZaIiI0 QYHKIIOHATY, PO3TIIIHY-
TOTO Ha JIJISHII MEXi, JIe 33/1aH0 HaUIHIIOK KpaioBUX yMoB. HaykoBa HOBH3HA. OOTpyHTOBaHO e(hEKTUBHICTH
HENPSIMAX METOMIB TPaHMYHMX, NMPUTPAHUYHUX Ta YACTKOBO-TPAHMYHMX €JIEMEHTIB (SK BapiaHTIB METOMY
TPaHUYHUX IHTCTPATbHUX PIBHSHB) JJIS TMOOYIOBH YHCIOBHX PO3B’S3KIB MpsMOI Ta OOEpHEHOI 3amad Teopii
MOTEHIIaJly B KyCKOBO-OJHOpinHIM miBruiomuHi. [TpaktiuHa 3Hauymiicts. E(eKTHBHICTH 3alponOHOBAaHOTO
HiIX0Ay 1O PO3B’SI3yBaHHSA OOCPHEHOI 3ajaui €NEeKTPOPO3BIAKH IMOCTIIHUM CTPYMOM 3YMOBIIEHA THUM, IO
BIAJIOCS peali3yBaTH MOeTalHe, «KacKajHe» po3Mi3HaBaHHS (OPMH, PO3MIpIB, OpiEHTALIl Ta ENEKTPOIPOBII-
HOCTI BKJIIOUEHHS, KEPYIOUYHCh HPUHIUIIOM: MPU JOCUTh HETOYHUX MOYATKOBUX HAONMKEHHSX HE BUKOPHC-
TOBYBATH yCi TOHKOIIII MOJIEIII 1 HE 3aliMaTHCs PO3Mi3HABAHHIM [IApaMETPiB, 110 MaJIO BIUTMBAIOTh Ha PE3yJIbTaT.

Kniouosi crosa: MaTremaTndHe MOJIEIIOBAHHS, TEOPis MOTEHIIANy, IpsiMa 33/1a4a, oOepHEeHa 3a/iada, Herps-
MHUH METOJI NPUTPaHHMYHHUX E€JEMCHTIB, YacTKOBO-TPAaHWYHI €JIEMEHTH, KYCKOBO-OJHOpIIHE CEpellOBHIIE,
CJNIEKTPUYHE MPOQITIOBAHHS.

Received 30.03.2024

107



