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Abstract. The Inertial Measurement Unit (IMU) [1] is a cornerstone technology in various fields, ranging from aerospace to 

consumer electronics, where accurate motion tracking is paramount. Central to the effectiveness of an IMU is the quality of data 

processing, particularly in the context of filtering techniques. This study compares two filtering methods: Complementary Filters 

and Kalman Filters, in their application to IMU data processing. Complementary Filters, known for their simplicity and efficiency, 

contrast with the more complex but potentially more accurate Kalman Filters. Our investigation delves into the underpinnings of 

each filter, followed by a practical analysis of their performance in real-world IMU applications. We comprehensively compare these 

filters in terms of accuracy, computational efficiency, and ease of implementation. This research offers valuable insights for 

practitioners and researchers in selecting the most suitable filtering approach for specific IMU-based applications, enhancing the 

overall quality of motion sensing and analysis. 
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1. Introduction 

The growing popularity of underwater remotely 

operated vehicles (ROVs) [2] in cost-effective applica- 

tions and academic research is a testament to their ace- 

ssible and economical design, making their operability a 

subject of vibrant discussion. One of the traditional 

challenges in ROV systems is state estimation, a topic 

extensively explored in literature, particularly focusing on 

various filtering techniques to estimate parameters exactly. 

Advanced filtering methods, like the particle filter, are 

known for their computational intensity and are typically 

reserved for powerful processors on the mainboard. 

Two prevalent methods in this realm are the 

Kalman filter [3] and the Complementary filter [4], both 

favored for their efficient frequency filtering capabilities 

in linear systems. The Kalman filter has been a focal point 

in numerous studies related to underwater control systems. 

For attitude estimation in underwater vehicles, known 

studies have adapted the standard Kalman filter to refine 

measurement updates. These adaptations often involve the 

multiplicative extended Kalman filter, which integrates 

data from accelerometers, gyroscopes, and depth sensors. 

Researchers have also proposed employing the Kalman 

filter in conjunction with a six-axis attitude determination 

algorithm as the observer. While this method is efficient, 

it demands significant computational resources. Therefore, 

it is convenient to track motion with the help of small 

inertial/magnetic sensors. 

Despite its effectiveness, the robust application of 

the Kalman filter in underwater environments presents 

challenges. In response, recent work has seen a shift 

towards the issue of complementary filters for high- 

quality attitude extraction and gyro bias estimation. This 

approach allows for filters to be formulated explicitly in 

quaternion form, facilitating straightforward imple- 

mentation and enhancing the operational proficiency of 

underwater ROVs.. 

2. Drawbacks 

Traditional pose estimation combines accelerometer 

and magnetometer measurements to derive the final pitch, 

roll, and yaw angles. However, without filtering, this method 

often results in significant noise and inaccuracies in the 

recorded poses, particularly in the yaw angle (as 

magnetometer data provides absolute orientation) [5]. This 

introduces substantial challenges in controlling ROVs. 

Complementary filtering addresses these issues by 

weighted fusion of accelerometer and gyroscope measu- 

rements, reducing drift errors in pose estimation. More- 

over, the computational complexity of complementary 

filtering is significantly lower than Kalman filtering, 

providing substantial assistance in real-time control of 

ROV poses. 

3. Goal 

The goal is to study complementary filtering 

techniques mitigating noise and inaccuracies, particularly 

in yaw angle determination, which significantly impact 

the control of ROVs. 

 

4. Comparison between Kalman filter and 

complementary filter 

Deploying an accelerometer and gyroscope and 

using complementary filtering, can enhance the accuracy 
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and reliability of real-time pose estimation [6] while 

reducing computational complexity compared to 

conventional methods. Ultimately, this research seeks to 

improve the effectiveness and efficiency of ROV control 

systems, enabling more precise maneuvering and 

navigation in various underwater environments. 

Kalman Filtering is an optimum approach that 

combines state estimations with observational data. The 

Kalman Filter is inherent in the minimization of system 

noise and uncertainty while providing generally accurate 

posture estimates [7]. However, its implementation is 

relatively difficult, incorporating concepts such as state 

space models and covariance matrices, and it requires a 

large amount of processing resources. This complexity 

may make it less appropriate for usage in resource- 

constrained embedded devices. 

 
Comparison Aspect Kalman Filtering Complementary Filtering 

Complexity High Low 

Computational Overhead Substantial Minimal 

Implementation Difficulty Complex Straightforward 

Adaptability to Dynamic Environments Moderately Good Limited 

Attitude Estimation Accuracy High Moderate 

Resource Consumption Considerable Low 

Suitability for High-Dynamic Movements Excellent Limited 

Real-Time Performance Relatively Slow Relatively Fast 

Multi-Sensor Fusion Applicable Applicable 

 

On the other hand, Complementary Filtering provides 

a simple and effective way of estimating pose. It 

accomplishes this by combining data from accelerometers 

and gyroscopes, reducing drift in pose estimation. 

Complementary Filtering has several advantages, including 

its simplicity of implementation and minimal computational 

load, making it ideal for applications requiring excellent real- 

time performance. However, it may struggle in dynamic 

situations or during quick motions due to accumulated 

mistakes, potentially resulting in unstable pose estimates. 

 
Comparison Aspect Accelerometer Gyroscope 

Sensitivity to High-Frequency Vibrational Noise Sensitive Insensitive 

Low-Frequency Attitude Drift Stable Drifts 

Resistance to High-Frequency Interference Weaker Stronger 

Resistance to Low-Frequency Interference Stronger Weaker 

 

5. Implementation and Derivation of 

Complementary Filtering 

Complementary Filtering is a widely used 

approach for attitude assessment that depends on the data 

fusion of two sensors: the accelerometer and the 

gyroscope [4]. The key to this strategy resides in 

optimizing the strengths of these sensors to improve the 

accuracy and reliability of attitude assessment. 

Processing Accelerometer Data: 

The accelerometer detects the deviation angle 

between the acceleration and gravitational acceleration 

vectors to determine the object's tilt. However, 

accelerometers detect gravity-induced acceleration, 

which can interfere with actual tilt measurements. As a 

result, the accelerometer signal must be adjusted to 

account for gravitational acceleration. Typically, a low- 

pass filter reduces high-frequency noise created by 

mechanical vibrations. After filtering, the data better 

captures the object's tilt. 

Processing Gyroscope Data: 

The gyroscope is designed to measure an object's 

angular velocity or speed of rotation. While gyroscopes 

are sensitive and precise in detecting rotational 

movements, their measurements can become inaccurate 

with time, causing drift in attitude calculation. The 

gyroscope's angular velocity data is coupled with the 

accelerometer's tilt information to minimize drift. This 

fusion is based on the complementarity concept, in which 

the outputs of both sensors are combined using a weighted 

average, thereby complementing each other's power. 

Derivation of the Complementary Filter Formula: 

For the gyroscope measurements 𝑔𝑥, 𝑔𝑦, 𝑔𝑧, and 
the error terms 𝑒 , 𝑒𝑦 , 𝑒𝑧 , along with their integral 

components 𝑒𝑥𝐼𝑛𝑡 , 𝑒𝑦𝐼𝑛𝑡 , 𝑒𝑧𝐼𝑛𝑡 , the derivation of the 
Complementary Filter can be expressed as follows: 

𝑔𝑥 = 𝛼 ⋅ 𝑔𝑥 + (1 − 𝛼) ⋅ (𝐾𝑝 ⋅ 𝑒𝑥 + 𝑒𝑥𝐼𝑛𝑡) 

𝑔𝑦 = 𝛼 ⋅ 𝑔𝑦 + (1 − 𝛼) ⋅ (𝐾𝑝 ⋅ 𝑒𝑦 + 𝑒𝑦𝐼𝑛𝑡) 
𝑔𝑧 = 𝛼 ⋅ 𝑔𝑧 + (1 − 𝛼) ⋅ (𝐾𝑝 ⋅ 𝑒𝑧 + 𝑒𝑧𝐼𝑛𝑡) 
- The alpha (α) value typically ranges between 0.98 

and 0.99, adjustable based on the specific scenario and 

hardware characteristics. 

- 𝐾𝑝 represents the proportional gain, used to 

adjust the influence of the error term on the gyroscope 

measurements. 
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- The error terms 𝑒𝑥, 𝑒𝑦, 𝑒𝑧 represent the cross- 

product of the estimated direction of gravity and the 

accelerometer measurements. 

- The component 𝑒𝑥𝐼𝑛𝑡, 𝑒𝑦𝐼𝑛𝑡, 𝑒𝑧𝐼𝑛𝑡 are the 
integrals of the error terms. 

Overall Implementation Process: 

a) Input Conversion: Convert angular velocity to 

radians per second. 

𝑔𝑥 = 𝑔𝑥 × 0.01745329 

𝑔𝑦 = 𝑔𝑦 × 0.01745329 

𝑔𝑧 = 𝑔𝑧 × 0.01745329 

b) Normalization of Accelerometer 

Measurements: 
 

 

norm = �𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2 

Compute and normalize the magnitude of the 

accelerometer measurements. 

 

d) Calculation of Error Terms: Define error terms 

as the cross-product of the estimated gravity direction 

and accelerometer measurements. 

𝑒𝑥 = 𝑎𝑦 × 𝑣𝑧 − 𝑎𝑧 × 𝑣𝑦 

𝑒𝑦 = 𝑎𝑧 × 𝑣𝑥 − 𝑎𝑥 × 𝑣𝑧 

𝑒𝑧 = 𝑎𝑥 × 𝑣𝑦 − 𝑎𝑦 × 𝑣𝑥 

e) Integration of Error Terms: Integrate the error 

terms. 

𝑒𝑥𝐼𝑛𝑡 = 𝑒𝑥𝐼𝑛𝑡 + 𝑒𝑥 × Ki × dt 

𝑒𝑦𝐼𝑛𝑡 = 𝑒𝑦𝐼𝑛𝑡 + 𝑒𝑦 × Ki × dt 

𝑒𝑧𝐼𝑛𝑡 = 𝑒𝑧𝐼𝑛𝑡 + 𝑒𝑧 × Ki × dt 
f) Adjustment of Gyroscope Measurements: 

Adjust the gyroscope measurements, applying the 

Complementary Filter to each axis. 

𝑔𝑥 = 𝛼 ⋅ 𝑔𝑥 + (1 − 𝛼) ⋅ (𝐾𝑝 ⋅ 𝑒𝑥 + 𝑒𝑥𝐼𝑛𝑡) 
𝑔𝑦 = 𝛼 ⋅ 𝑔𝑦 + (1 − 𝛼) ⋅ (𝐾𝑝 ⋅ 𝑒𝑦 + 𝑒𝑦𝐼𝑛𝑡) 

𝑔𝑧 = 𝛼 ⋅ 𝑔𝑧 + (1 − 𝛼) ⋅ ( Kp ez + ezInt ) 

𝑎𝑥 = 
𝑎𝑥 

norm 
, 𝑎𝑦 = 

𝑎𝑦 

norm 
, 𝑎𝑧 = 

𝑎𝑧 
 

norm 

g) Quaternion Integration Update: Update the 

quaternion using the angular velocity after 

c) Estimation of Gravity Direction: Estimate the 

direction of gravity based on the current quaternion. 

𝑣𝑥 = 2.0 × (𝑞1 × 𝑞3 − 𝑞0 × 𝑞2) 

𝑣𝑦 = 2.0 × (𝑞0 × 𝑞1 + 𝑞2 × 𝑞3) 

𝑣𝑧 = 𝑞02 − 𝑞12 − 𝑞22 + 𝑞32 

Complementary Filtering. 

h) Quaternion Normalization: Normalize the 

quaternion. 

i) Calculation of Euler Angles: Compute the Euler 

angles based on the updated quaternion. 

pitch = asin(−2 × 𝑞1 × 𝑞3 + 2 × 𝑞0 × 𝑞2) × 57.3 

roll = atan 2(2 × 𝑞2 × 𝑞3 + 2 × 𝑞0 × 𝑞1, −2 × 𝑞1 × 𝑞1 − 2 × 𝑞2 × 𝑞2 + 1) × 57.3 

𝑦𝑎𝑤 = 𝑎𝑡𝑎𝑛 2(2 × (𝑞1 × 𝑞2 + 𝑞0 × 𝑞3), 𝑞02 + 𝑞12 − 𝑞22 − 𝑞32) × 57.3 
 

Through this process, Complementary Filtering 

effectively combines information from the accelerometer 

and gyroscope, providing a relatively accurate attitude 

estimation. 

 

  

Fig. 1. Results of comparative analysis 
 

In the conducted research, two experimental setups 

(Fig.1) were rigorously designed to contrast the 

performance of the tilt-compensated magnetometer-based 

yaw angle calculation method against the attitude 

estimation achieved through a complementary filter 

algorithm. 
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6. Conclusions 

 
1. The conducted analysis of the Inertial Measurement Unit has confirmed that data processing quality 

depends on applied filtering techniques. There were studied and compared 2 filtering methods: Complementary 

Filters and Kalman Filters. 

2. The comparative analysis of 2 experimental setups revealed that the complementary filter algorithm 

exhibited lower noise levels and a higher synchronization rate in attitude computation. Notably, the yaw angle 

derived from the magnetometer reflects an absolute position, inherently preventing the initialization of the yaw 

value at zero. This characteristic imposes significant limitations on the closed-loop control systems of remotely 

operated vehicles, due to the inherent inability to reset or calibrate the yaw orientation at the start of an operation. 

3. In contrast, the complementary filter approach generates posture information relative to the position at 

startup, adjusting dynamically to changes in orientation. This adaptability ensures a more robust response to 

irregular alterations in the IMU's operational environment, delivering stable posture signals with significantly 

reduced noise. Furthermore, the complementary filter demonstrated superior recovery performance following 

disturbances, underscoring its efficacy in enhancing the precision and reliability of posture estimation in dynamic 

and unpredictable conditions. 
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