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In this paper, we suggest a diffusive and delayed IS-LM business cycle model with inter-
est rate, general investment and money supply under homogeneous Neumann boundary
conditions. The time delays are respectively incorporated into capital stock and gross
product. We first demonstrate the model’s sound mathematical and economic posing. By
examining the corresponding characteristic equation, the local stability of the economic
equilibrium and the existence of Hopf bifurcation are proved.
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1. Introduction

In recent years, partial differential equations (PDEs) play an essential role to understand the dynam-
ics of business cycles. In 2023, Elkarmouchi et al. [1] developed an IS-LM model that explains the
spatiotemporal dynamics of business cycle under the services and goods market as well as the money
market by taking the money supply as a constant. Such model includes numerous economic models
that are known to exist in the literature like [2–4].

In general, we can say that the are two schools of economics that determine the nature of money
supply. The first one is Chicago school that considers the money supply as an exogenous variable
for the reason that the monetary authority can regulate and observe it, which is taken into account
in some recent works [4–6]. The second one is Keynesian school views it as an endogenous variable
because the monetary expansion as a result of different economic or non-economic factors, this idea is
presented in some recent studies like [7–9].

In this paper by incorporating endogenous money supply, we suggest a diffusive IS-LM model with
a two-delay capital accumulation equation. The first delay refers to the time delay between the decision
to invest and when it is implemented, whereas the second one represents the period of time it takes for
an investment to be produced. The system of nonlinear PDEs or reaction-diffusion equations below
provides the model.
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∂Y

∂t
= d1∆Y (t, x) + α

[

I(Y (t, x),K(t, x), R(t, x)) +G(Y (t, x))− T (Y (t, x)) − S(Y D)
]

,

∂K

∂t
= d2∆K(t, x) + I(Y (t− τ1, x),K(t− τ2, x), R(t, x)) − δK(t, x),

∂R

∂t
= d3∆R(t, x) + β[L(Y (t, x), R(t, x)) −M(t, x)],

∂M

∂t
= d4∆M(t, x) + ψM(t, x)[G(Y (t, x))− T (Y (t, x))],

(1)

where the economic variables, Y (t, x), K(t, x), R(t, x) and M(t, x) indicate the gross product, the
capital stock, the interest rate and the money supply at location x and time t, respectively. The
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diffusion coefficients of Y , K, R and M are d1, d2, d3 and d4, respectively, and ∆ means the Laplacian
operator. The demand for money or liquidity preference function is marked by L(Y,R) while the
investment is noted by I(Y,K,R). The parameter α presents the adjustment coefficient in the goods
market while β indicates the coefficient of adjustment in the money market. G(Y ), T (Y ) and Y D =
Y − T (Y ) refer to the Government expenditure, tax income and discretionary income, respectively.
Finally, δ is depreciation rate of the capital stock and ψ is the adjustment coefficient in public funds.
Additionally, we take into account the model (1) with initial conditions:

Y (t, x) = Φ1(t, x), K(t, x) = Φ2(t, x), R(t, x) = Φ3(t, x), M(t, x) = Φ4(t, x), (t, x) ∈ [−τ, 0]×Ω, (2)

and Neumann boundary conditions:

∂Y

∂ν
=
∂K

∂ν
=
∂R

∂ν
=
∂M

∂ν
= 0, on (0,+∞) × ∂Ω, (3)

in which τ = max{τ1, τ2}, ∂
∂ν

means the outward normal derivative on the smooth boundary ∂Ω and
Ω indicates the market capacity.

The remainder of the document is structured as below. In Section 2, we give some preliminary
findings including the existence and the uniqueness of solutions of our model (1) also the existence of
economic equilibrium. The characteristic equation of this system is examined in Section 3 through the
construction a basis of phase space based on the eigenvectors of the Laplace operator. Local stability
is proved, as well as the existence of Hopf bifurcation. The last section offers a brief conclusion.

2. Preliminary results

As in [4, 6, 8], before realizing the remainder, the following specific functions will be utilized:
• Savings S:

S(Y D) = s Y D,

where 0 < s < 1;
• Government expenditure G:

G(Y ) = G0 +
γ0

g1Y + g2
,

where G0 represents positive autonomous public expenditure and γ0, g1, g2 are positive parameters
regulating G is susceptibility to changes in Y ;
• Tax income T :

T (Y ) = δ1Y,

where δ1 (0 < δ1 < 1) is tax rate;
• Liquidity preference L:

L(Y,R) = L(Y )− γR,
in which γ represents the variation of demand of liquidity in relation to interest rate.

Let X = C
(

Ω,R4
)

be the Banach space of continuous functions from Ω into R
4 and C =

C ([−τ, 0],X) be the Banach space of continuous functions of [−τ, 0] into X with standard uniform
topology. For the sake of simplicity, we denote an element ϕ ∈ C and define it as a function from
[−τ, 0] × Ω into R

4 defined by ϕ(s, x) = ϕ(s)(x). For any continuous function ω(·) : [−τ, b) → X for
b > 0, we set ωt ∈ C by ωt(s) = ω(t+ s) for s ∈ [−τ, 0].
Theorem 1. For each given initial Φ = (Φ1,Φ2,Φ3,Φ4)

T ∈ C, there exists a unique solution of
problem (1)–(3) defined on [0,+∞).

Proof. For each ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ C and x ∈ Ω, we define G̃ = (G̃1, G̃2, G̃3, G̃4) : C → X by

G̃1(ϕ)(x) = α

[

I(ϕ1(0, x), ϕ2(0, x), ϕ3(0, x)) +G0 +
γ0

g1ϕ1(0, x) + g2
+ (s(δ1 − 1)− δ1)ϕ1(0, x)

]

,

G̃2(ϕ)(x) = I(ϕ1(−τ1, x), ϕ2(−τ2, x), ϕ3(0, x)) − δϕ2(0, x),

G̃3(ϕ)(x) = β[L(ϕ1(0, x)) − γϕ3(0, x) − ϕ4(0, x)],
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G̃4(ϕ)(x) = ψϕ4(0, x)

[

G0 +
γ0

g1ϕ1(0, x) + g2
− δ1ϕ1(0, x)

]

.

The following abstract functional differential equation can therefore be used to rewrite the problem (1)–
(3),

{

n′(t) = Fn(t) + G̃(nt), t > 0
n(0) = Φ ∈ C, (4)

where n = (Y,K,R,M)T and Fn = (d1∆Y, d2∆K, d3∆R, d4∆M)T . It is apparent that G̃ is locally
Lipschitz in C, and as in [10], we draw the conclusion that the problem (4) has a unique local solution
on [0, Tmax), where Tmax denotes the maximal existence time for solution of system (4). �

We need the following hypothesis in order to investigate whether the model’s economic equilib-
rium (1) exists:

(H1) I

(

G0g1 − δ1g2 +
√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

,
sY D

δ
, 0

)

− S
(

Y D
)

> 0.

Theorem 2. If (H1) holds, then (1) has a unique economic equilibrium defined by

E∗
(

Y ∗,K∗, R∗,M∗
)

, in which Y ∗ =
G0g1−δ1g2+

√
(δ1g2+G0g1)2+4δ1g1γ0
2δ1g1

, K∗ = s(1−δ1)Y ∗

δ
, R∗ is the positive

solution of the subsequent equation

I

(

G0g1 − δ1g2 +
√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

,
s(1− δ1)Y

δ
,R

)

− s(1− δ1)Y = 0,

and M∗ = L(Y ∗)− γ̄R∗.

Proof. For the aforementioned system with certain functional forms, the unique equilibrium point is
represented by the solution of the subsequent equations:

I(Y,K,R) = S(Y D), (5)

I(Y,K,R) = δK, (6)

L(Y )− γ̄R−M = 0, (7)

G(Y ) = T (Y ). (8)

From (8),

Y =
G0g1 − δ1g2 +

√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

, (9)

and from (5)–(6) we get

K =
s(1− δ1)Y

δ
. (10)

By replacing (9) and (10) into the first equation (5), one can get

I

(

G0g1 − δ1g2 +
√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

,
s(1− δ1)Y

δ
,R

)

− s(1− δ1)Y = 0.

Let Q be the function defined on the interval [0,+∞) by

Q(R) = I

(

G0g1 − δ1g2 +
√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

,
s(1− δ1)Y

δ
,R

)

− s(1− δ1)Y.

From (H1), we obtain Q(0) > 0, lim
R→+∞

Q(R) = −∞ and Q′(R) = ∂I
∂R

< 0.

As a consequence, there exists a unique R∗ ∈ (0,+∞) such that R∗ is the positive solution of the
equation Q(R) = 0. We get by using (7) M∗ = L(Y ∗)− γ̄R∗. This completes the proof. �

3. Local stability and Hopf bifurcation analysis

Study the condition of local stability and Hopf bifurcation is what this part is all about. Let y = Y −Y ∗,
k = K −K∗, r = R−R∗ and m =M −M∗. One can obtain the linear part of (1) as follows
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
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







∂y

∂t
= d1∆y(t, x) + α

[(

a− γ0g1
(g1Y ∗ + g2)2

+ (s(δ1 − 1)− δ1)

)

y(t, x) + bk(t, x) + cr(t, x)

]

,

∂k

∂t
= d2∆k(t, x) + ay(t− τ1, x) + bk(t− τ2, x)− δk(t, x) + cr(t, x),

∂r

∂t
= d3∆r(t, x) + β[l1y(t, x)− γr(t, x)−m(t, x)],

∂m

∂t
= d4∆m(t, x) + ψM∗

[

γ0g1
(g1Y ∗ + g2)2

− δ1

]

y(t, x),

∂y

∂ν
=
∂k

∂ν
=
∂r

∂ν
=
∂m

∂ν
= 0, x ∈ ∂Ω, t > 0,

(11)

where a = ∂I
∂Y

(Y ∗,K∗, R∗), b = ∂I
∂K

(Y ∗,K∗, R∗), c = ∂I
∂R

(Y ∗,K∗, R∗) and l1 = L′(Y ∗).
Letting ζ = C([−τ, 0],X) represent the Banach space of continuous functions of [−τ, 0] into X,

where X is defined by

X =

{

y, k, r,m ∈W 2,2(Ω):
∂y(t, x)

∂ν
=
∂k(t, x)

∂ν
=
∂r(t, x)

∂ν
=
∂m(t, x)

∂ν
= 0, x ∈ ∂Ω

}

,

with the inner product 〈·, ·〉. Therefore, system (11) can be recast as an abstract differential equation
in the phase space ζ as below,

W ′(t) = D∆W + L(Wt), (12)

where W = (y, k, r,m)T , D = diag(d1, d2, d3, d4) and L : ζ → X defined by

L(φ) = A0φ(0) +A1φ(−τ1) +A2φ(−τ2), (13)

with

A0 =













α
(

a− γ0g1
(g1Y ∗+g2)2

+ s(δ1 − 1)− δ1

)

αb αc 0

0 δ c 0
βl1 0 −βγ −β

ψM∗
[

− γ0g1
(g1Y ∗+g2)2

− δ1

]

0 0 0













, A1 =









0 0 0 0
a 0 0 0
0 0 0 0
0 0 0 0









and

A2 =









0 0 0 0
0 b 0 0
0 0 0 0
0 0 0 0









.

The characteristic of (12) is as below

λy −D∆y − L
(

eλy
)

= 0, y ∈ dom(∆)\{0}. (14)

Let the eigenvalue of the operator ∆ under the Neumann boundary conditions on X be −k2 (k ∈ N),
then the corresponding eigenvectors have the subsequent shape:

β1k =









γk
0
0
0









, β2k =









0
γk
0
0









, β3k =









0
0
γk
0









, β3k =









0
0
0
γk









, γk = cos(kx), k ∈ N

and a basis for the phase space X is constructed by {β1k , β2k , β3k , β4k}+∞
k=0. The phase space X can

therefore be expanded in the form of Fourier, as shown below

y =

∞
∑

k=0

Y T
k









β1k
β2k
β3k
β4k









, Yk =









〈

y, β1k
〉

〈

y, β2k
〉

〈

y, β3k
〉

〈

y, β4k
〉









. (15)
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Then by calculation, we obtain

L









φT









β1k
β2k
β3k
β4k

















= L(φ)T









β1k
β2k
β3k
β4k









, k ∈ N. (16)

Substituting (16) and (15) into (14),

∞
∑

k=0

Y T
k

[(

λI4 +Dk2
)

−A
]

·









β1k
β2k
β3k
β4k









= 0, (17)

A =











α
(

a− γ0g1
(g1Y ∗+g2)2

+ s(δ1 − 1)− δ1
)

αb αc 0

a e−λτ1 −δ + b e−λτ2 c 0
βl1 0 −βγ −β

ψM∗
[

− γ0g1
(g1Y ∗+g2)2

− δ1
]

0 0 0











.

The following is the characteristic equation of (17)

λ4 + λ3g3,k + λ2g2,k + λg1,k + g0,k +
[

h3λ
3 + h2,kλ

2 + h1,kλ+ h0,k
]

e−λτ2+
[

r2λ
2 + r1,kλ+ r0,k

]

e−λτ1 = 0, (18)

where

g3,k = d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)

+ d2k
2 + δ + d3k

2 + βγ + d4k
2,

g2,k = −βl1αc+ (d2k
2 + δ)(d3k

2 + βγ + d4k
2) + d4k

2(d3k
2 + βγ)

+
[

d2k
2 + δ + d3k

2 + βγ + d4k
2
]

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)]

,

g1,k = −βl1αc(b+ d2k
2 + δ + d4k

2)− βψM∗αc

[

γ0g1
(g1Y ∗ + g2)2

+ δ1

]

+ d4k
2

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ (s(δ1 − 1)− δ1)

)]

(d3k
2 + βγ) + (d2k

2 + δ)

(d4k
2 + d3k

3 + βγ)

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)]

,

g0,k = −d4k2βl1αbc− βl1αcd4k
2(d2k

2 + δ)− bβψM∗αc

[

γ0g1
(g1Y ∗ + g2)2

+ δ1

]

+ (d3k
2 + βγ)(d2k

2 + δ)

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)]

d4k
2 − βψM∗αc

[

γ0g1
(g1Y ∗ + g2)2

+ δ1

]

(d2k
2 + δ),

h3 = −b,

h2,k = −
[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)

+ d3k
2 + βγ + d4k

2

]

b,

h1,k =

[

βl1αc− (d3k
2 + βγ)

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)]]

b

−
[

d4k
2

(

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)

+ d3k
2 + βγ

)]

b,

h0,k = −bd4k2(d3k2 + βγ)

[

d1k
2 − α

(

a− γ0g1
(g1Y ∗ + g2)2

+ s(δ1 − 1)− δ1

)]
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+

[

βl1αcd4k
2 + βψM∗αc

(

γ0g1
(g1Y ∗ + g2)2

+ δ1

)]

b,

r2 = −ab,
r1,k = −ab

(

d3k
2 + βγ + d4k

2
)

,

r0,k = −abd4k2
(

d3k
2 + βγ

)

.

λ = 0 is not a solution to Eq. (18) for k ∈ N.
When τ1 = τ2 = 0, the equation (18) is

λ4 + λ3(g3,k + h3) + λ2(g2,k + r2 + h2,k) + λ(g1,k + r1 + h1,k) + g0,k + r0 + h0,k = 0. (19)

If a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1, then the coefficients of equation (19) satisfy:

g3,k + h3 > 0, g0,k + r0 + h0,k > 0, (g3,k + h3)(g2,k + r2 + h2,k) > (g1,k + r1 + h1,k),

(g3,k + h3)(g2,k + r2 + h2,k)(g1,k + r1 + h1,k) > (g3,k + h3)
2(g0,k + r0 + h0,k) + (g1,k + r1 + h1,k)

2.

According to the Routh–Hurwitz criterion, we find that the economic equilibrium E∗ of system (1) is
locally stable when τ1 = τ2 = 0.

3.1. Case 1: τ2 = 0, τ1 6= 0

Now, when τ2 = 0 and τ1 6= 0 Eq. (18) corresponds to the subsequent equation:

λ4 + λ3(h3 + g3,k) + λ2(h2,k + g2,k) + λ(h1,k + g1,k) + g0,k + h0,k +
[

r2λ
2 + r1,kλ+ r0,k

]

e−λτ1 = 0. (20)

Suppose that Eq. (20) has a pair of conjugate purely imaginary roots B ± iω(ω > 0). Substituting
λ = iω(ω > 0) into (20) and separating the imaginary and real parts, it is evident that

{

ω4 − ω2(g2,k + h2,k) + g0,k + h0,k = (r2ω
2 − r0,k) cos(ωτ1)− ωr1,k sin(ωτ1),

ω3(g3,k + h3,k)− ω(g1,k + h1,k) = (r2ω
2 − r0,k) sin(ωτ1) + ωr1,k cos(ωτ1).

(21)

Therefore, the existence of purely imaginary roots of Eq. (20) is identical to the existence of solutions
of Eq. (21). Define

E(ω) = (r2ω
2 − r0,k)

2 + r21,kω
2. (22)

If E 6= 0, then by Eq. (21), we get

sin(ωτ1) =
(r2ω

2 − r0,k)M(ω) − r1,kω[ω
4 − ω2(g2,k + h2,k) + g0,k + h0,k]

E(ω)
,

cos(ωτ1) =
ωr1,kM(ω) + (r2ω

2 − r0,k)[ω
4 − ω2(g2,k + h2,k) + g0,k + h0,k]

E(ω)
, (23)

where

M(ω) = ω3(g3,k + h3,k)− ω(g1,k + h1,k).

Two equations of (23) are squared and added, and it results that

E2(ω) =
[

(r2ω
2 − r0,k)M(ω) − r1,kω[ω

4 − ω2(g2,k + h2,k) + g0,k + h0,k]
]2

+
[

ωr1,kM(ω) + (r2ω
2 − r0,k)[ω

4 − ω2(g2,k + h2,k) + g0,k + h0,k]
]2
.

Denote

W (ω) = E2(ω)−
[

(r2ω
2 − r0,k)M(ω) − r1,kω

[

ω4 − ω2(g2,k + h2,k) + g0,k + h0,k
]]2

−
[

ωr1,kM(ω) + (r2ω
2 − r0,k)

[

ω4 − ω2(g2,k + h2,k) + g0,k + h0,k
]]2

. (24)

By calculations, we get from (22) and (24) that

W (ω) = f12ω
12 + f10ω

10 + f8ω
8 + f6ω

6 + f4ω
4 + f2ω

2 + f, (25)

where

f12 = −r22,
f10 = 2r22(g2,k + h2,k) + r22(h3,k + g3,k)

2 − r21,k,
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f8 = r42 + 2r22(g3,k + h3,k)(h1,k + g1,k) + [2r2r0,k − r1,k](g3,k + h3,k)
2 − r20,k − (g2,k + h2,k)

2r22

+ [2r21,k − 2r0,kr2](g2,k + h2,k)− 2(h0,k + g0,k)r
2
2 ,

f6 = [2r1,k − 4r2r0,k](g3,k + h3,k)(h1,k + g1,k) + 2(g2,k + h2,k)(h0,k + g0,k)r
2
2

+ [2r0,kr2 − 2r21,k](h0,k + g0,k) + [2r0,kr2 − r21,k](g2,k + h2,k)
2 + (g3,k + h3,k)

2

r20,k + 2r20,k(g2,k + h2,k)− r22(g1,k + h1,k)
2,

f4 = r41,k − 4r22r
2
0,k + 2r2r0,k(h1,k + g1,k)

2 − 2r0,k(h1,k + g1,k)(g3,k + h3,k)

[2r21,k − 4r0,kr2](h0,k + g0,k)(g2,k + h2,k)− r1,k(h1,k + g1,k)
2 − (g0,k + h0,k)

2

r22 − r20,k(g2,k + h2,k)
2 − (h0,k + g0,k)r0,k

f2 = r0,k(h1,k + g1,k)
2 + [r21,k + 2r0,kr2](h0,k + g0,k)

2 + 2(h0,k + g0,k)(g2,k + h2,k),

f = r40,k − (h0,k + g0,k)
2r20,k.

Let z = ω2, Eq. (24) can be expressed as

h(z) := f12z
6 + f10z

5 + f8z
4 + f6z

3 + f4z
2 + f2z + f = 0. (26)

Clearly, if a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1 and h(z) = 0 has no positive roots, then the economic

equilibrium E∗ of system (1) is locally asymptotically stable for all τ1 > 0. Otherwise, for a certain
k0 ∈ N, if Eq. (26) has positive roots, without losing the ability to generalize, we suppose that Eq. (26)
with k = k0 has six positive roots, namely zn(n = 1, . . . , 6). Consequently, Eq. (24) has six positive
roots ωn =

√
zn (n = 1, . . . , 6).

For n = 1, . . . , 6, one can extract the matching τ j1,n > 0 from (21) such that (20) has a pair of
purely imaginary roots ±iωn offered by

τ j1,n =
1

ωn
arccos

ωnr1,kM(ωn) +
(

r2ω
2
n − r0,k

)[

ω4
n − ω2

n(g2,k + h2,k) + g0,k + h0,k
]

E(ωn)
+
2πj

ωn
, j ∈ N. (27)

Let the root of Eq. (20) be λ(τ1) = ξ(τ1) + iω(τ1) satisfying ξ(τ j1,n) = 0, ω(τ j1,n) = ωn. We now
investigate the existence of Hopf bifurcation [11]. To this end, differentiating two sides of (20) with
respect to τ1. Thus, it follows
(

dλ

dτ1

)−1

=
4λ3 + 3λ2(g3,k + h3) + 2λ(g2,k + h2,k) + (g1,k + h1,k)

λ(r2λ2 + r1,kλ+ r0,k)e−λτ1
+

2r2λ+ r1,k
λ(r2λ2 + r1,kλ+ r0,k)

− τ1
λ
.

Denote

τ∗1,0 = τ
(0)
1,n0

= min
n∈{1,...,6}

{

τ
(0)
1,n

}

, ω∗
0 = ωn0

.

By a simple computation, one get that

sign

{

d(Reλ)

dτ

}

τ=τ∗
1,0

= sign

{

Re

(

dλ

dτ

)−1}

τ=τ∗
1,0

= sign

{

h′(z∗n)

E(ω∗
0)

}

,

where z∗n = ω∗
0
2. The results from the discussion above are as follows.

Theorem 3. For τ2 = 0, suppose that a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1.

(i) The economic equilibrium E∗ of system (1) is locally asymptotically stable for all τ1 > 0, if
h(z) = 0 has no positive roots.

(ii) If sign {h′(z∗n)/E(ω∗
0)} > 0, then system (1) undergoes a Hopf bifurcation at E∗ when τ = τ∗1,0.

Furthermore, the economic equilibrium E∗ of system (1) is unstable for τ > τ∗1,0 and locally
asymptotically stable for τ ∈ [0, τ∗1,0).

3.2. Case 2: τ2 6= 0, τ1 6= 0

In this subsection, we study Eq. (18) with τ2 > 0 and τ1 in the stable regions. We take τ2 as a
parameter of bifurcation. By Ruan and Wei [12], we have the subsequent lemma.
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Lemma 1. If all roots of equation (20) have negative real parts for τ1 > 0, then there exists a
τ∗2 (τ1) > 0, such that when 0 6 τ2 < τ∗2 (τ1) all roots of equation (18) have negative real parts.

Proof. The left side of the equation (18) is analytical in λ and τ2. According to [12], the sum of the
multiplicities of zeros on the left side of Eq. (18) in the open right half-plane can change when τ2 varies
only if a zero is on or crosses the imaginary axis. �

Theorem 4. Let τ1 in the stable regions and a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1. Then we have

(i) There exists a τ∗2 (τ1) such that the economic equilibrium E∗ is locally asymptotically stable
for τ2 ∈ [0, τ∗2 (τ1)) when h(z) = 0 has no positive roots.

(ii) For any τ1 ∈ [0, τ1,0), there exists a τ∗2 (τ1) such that the economic equilibrium E∗ is locally
asymptotically stable for τ2 ∈ [0, τ∗2 (τ1)) when sign {h′(z∗n)/E(ω∗

0)} > 0.

Proof. Theorem 3 (i) and Lemma 1 lead directly to the proof of (i). Now, we prove (ii). Assume that
sign {h′(z∗n)/E(ω∗

0)} > 0 and we conclude using Theorem 3 that E∗ is locally asymptotically stable for
τ1 ∈ [0, τ1,0). Therefore, all roots of Eq. (20) have negative real parts. It follows from Lemma 1, that
there exists a τ∗2 (τ1) > 0, such that when 0 6 τ2 < τ∗2 (τ1) all roots of equation (18) have negative real
parts. Thus, when τ2 ∈ [0, τ∗2 (τ1)) we find that E∗ is locally asymptotically stable. �

3.3. Special case

We examine the following IS-LM model in this subsection:






































∂Y

∂t
= d1∆Y (t, x) + α

[

I(Y (t, x),K(t, x), R(t, x)) +G(Y (t, x))− T (Y (t, x)) − S(Y D)
]

,

∂K

∂t
= d2∆K(t, x) + I(Y (t− τ, x),K(t− τ, x), R(t, x)) − δK(t, x),

∂R

∂t
= d3∆R(t, x) + β[L(Y (t, x), R(t, x)) −M(t, x)],

∂M

∂t
= d4∆M(t, x) + ψM(t, x)[G(Y (t, x)) − T (Y (t, x))],

(28)

This system is a special case of system (1) with τ1 = τ2 = τ . The following conclusions are drawn from
Theorems 1 and 2.

Corollary 1.

(i) There exists a unique solution of problem (28) defined on [0,+∞) for any given initial Φ ∈ C.
(ii) If (H1) holds, then (28) has a unique economic equilibrium defined by E∗(Y ∗,K∗, R∗,M∗),

where Y ∗ =
G0g1−δ1g2+

√
(δ1g2+G0g1)2+4δ1g1γ0
2δ1g1

, K∗ = s(1−δ1)Y ∗

δ
, R∗ is the positive solution of

the subsequent equation

I

(

G0g1 − δ1g2 +
√

(δ1g2 +G0g1)2 + 4δ1g1γ0
2δ1g1

,
s(1− δ1)Y

δ
,R

)

− s(1− δ1)Y = 0

and M∗ = L(Y ∗)− γ̄R∗.

The system stability analysis (28) is the subject of the following discussion. In this case, Eq. (18)
becomes

λ4 + λ3g3,k + λ2g2,k + λg1,k + g0,k + e−λτ
[

h3λ
3 + (r2 + h2,k)λ

2 + (h1,k + r1,k)λ+ h0,k + r0,k
]

= 0, (29)

When τ = 0, all roots of Eq. (29) have negative real parts if a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1. Then the

economic equilibrium is locally asymptotically stable.
For τ > 0, let iω (ω > 0) is a root of (29), then we obtain

{

−ω4 + ω2g2,k − g0,k = T1 cos(ωτ) + T2 sin(ωτ),
ω3g3,k − ωg1,k = T2 cos(ωτ)− T1 sin(ωτ),

(30)

where

T1 = r0,k + h0,k − ω2(h2,k + r2), T2 = (r1,k + h1,k)ω − ω3h3.
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Therefore, the existence of purely imaginary roots of Eq. (20) is equivalent to the existence of solutions
of Eq. (30). Define

L(ω) = T 2
2 + T 2

1 . (31)

If L 6= 0, then by Eq. (21), we get

cos(ωτ) =
T2(ω

3g3,k − ωg1,k) + T1(−ω4 + ω2g2,k − g0,k)

L(ω)
, (32)

sin(ωτ) =
T2(−ω4 + ω2g2,k − g0,k)− T1(ω

3g3,k − ωg1,k)

L(ω)
.

Two equations of (32) are squared and added, and it results that

L2(ω) =
[

T2(−ω4 + ω2g2,k − g0,k)− T1(ω
3g3,k − ωg1,k)

]2

+
[

T2(ω
3g3,k − ωg1,k) + T1(−ω4 + ω2g2,k − g0,k)

]2
. (33)

Denote

V (ω) = L2(ω)−
[

T2(−ω4 + ω2g2,k − g0,k)− T1(ω
3g3,k − ωg1,k)

]2

−
[

T2(ω
3g3,k − ωg1,k) + T1(−ω4 + ω2g2,k − g0,k)

]2
. (34)

By calculations, we get from (31) and (34) that

V (ω) = v14ω
14 + v12ω

12 + v10ω
10 + v8ω

8 + v6ω
6 + v4ω

4 + v2ω
2 + v, (35)

where

v14 = −h23,
v12 = h43 + 2h3(r1,k + h1,k) + 2h23g2,k − (h2,k + r2)

2 − h23g
2
3,k,

v10 = 2h23(h2,k + r2)
2 − 2h33(h1,k + r1,k)− 4h33(h1,k + r1,k)− (h1,k + r1,k)

2 − h3g2,k(h1,k + r1,k)

− h23(g2,k + 2g0,k)− (r2 + h2,k)
2g23,k + 2h3g3,k(h1,k + r1,k) + 2h23g1,k + 2(h2,k + r2)(h0,k

+ r0,k) + 2g2,k(h2,k + r2)
2,

v8 = 4h23(r1,k + h1,k)
2 − 4h33(r2 + h2,k)(r0,k + h0,k) + (h2,k + r2)

2 − 4h3(r2 + h2,k)
2(r1,k + h1,k)

+ 2g2,k(r1,k + h1,k)
2 + 2h3(r1,k + h1,k)(g2,k + 2g0,k) + 2g0,kg2,kh

2
3 + 2g23,k(r2 + h2,k)

(h0,k + r0,k) + 2g3,kg1,k(h1,k + r2)
2 − (h1,k + r1,k)

2g23,k − h3(h1,k + r1,k)g3,kg1,k − g21,kh
2
3

− (h0,k + r0,k)
2 − 4g2,k(h0,k + r0,k)(r2 + h2,k)− (g2,k + 2g0,k)(r2 + h2,k)

2,

v6 = −4h3(r1,k + h1,k)
2 − (r1,k + h1,k)

2(g2,k + 2g0,k)− 4h3(r1,k + h1,k)g0,kg2,k − h23g
2
0,k

− (r0,k + h0,k)
2g3,k − 4g3,kg1,k(r1,k + h0,k)(r2 + h2,k)− (h2,k + r2,k)

2g1,k + 2(h1,k + r1,k)
2

g3,kg1,k + 2h3(h1,k + r1,k)g
2
1,k + 2g2,k(h0,k + r0,k)

2 + 2g2,k(h0,k + r0,k)(h2,k + r2) + 4g0,k

(h0,k + r0,k)(h2,k + r2) + g0,kg2,k(h0,k + r2)
2,

v4 = (r1,k + h1,k)− 2g0,kg2,k(r1,k + h1,k)
2 + h3(r1,k + h1,k)g

2
0,k + 2g3,kg1,k(h0,k + r0,k)

2 + 2g1,k

(h2,k + r2)(h0,k + r0,k)− (r1,k + h1,k)
2g21,k − (g2,k + 2g0,k)(h0,k + r0,k)

2 − 4g0,kg2,k

(r0,k + h0,k)(h2,k + r2)− (h1,k + r2)g
2
0,k,

v2 = −g1,k(r0,k + h0,k)
2 + 2g0,kg2,k(r0,k + h0,k)

2 + (r0,k + h0,k)(h2,k + r2)

g0,kg2,k + 2(r0,k + h0,k)(h2,k + r2)g
2
0,k + 2(h0,k + r0,k)

2(h2,k + r2),

v = (h0,k + r0,k)
4 + g0,k(h0,k + r0,k)

2 + (h1,k + r1,k)
2g20,k.

Let z = ω2, Eq. (34) can be written as

d(z) := v14z
7 + v12z

6 + v10z
5 + v8z

4 + v6z
3 + v4z

2 + v2z + v = 0. (36)

Clearly, if a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1 and d(z) = 0 has no positive roots, then E∗ of (28) is locally

asymptotically stable for all τ > 0. Otherwise, for a certain k0 ∈ N, if Eq. (36) has positive roots,
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without loss of generality, we suppose that Eq. (36) with k = k0 has seven positive roots, noted, zn
(n = 1, . . . , 7). Accordingly, Eq. (34) has seven positive roots ωn =

√
zn (n = 1, . . . , 7).

For n = 1, . . . , 7, one can extract the matching τ jn > 0 from (30) such that (29) has a pair of purely
imaginary roots ±iωn stated by

τ jn =
1

ωn
arccos

T2(ω
3
ng3,k − ωng1,k) + T1(−ω4

n + ω2
ng2,k − g0,k)

L(ωn)
+

2πj

ωn
, j = 0, 1, . . . . (37)

Let the root of Eq. (29) be λ(τ) = ξ(τ) + iω(τ) satisfying ξ(τ jn) = 0, ω(τ jn) = ωn. Now, differentiating
both sides of (29) with respect to τ leads to

(

dλ

dτ

)−1

=
4λ3 + 3λ2g3,k + 2λg2,k + g1,k

λ(λ3h3 + (h2,k + r2)λ2 + (r1,k + h1,k)λ+ r0,k + h0,k)e−λτ

+
3λ2h3 + 2(r2 + h2,k)λ+ h1,k + r1,k

λ(λ3h3 + (h2,k + r2)λ2 + (r1,k + h1,k)λ+ r0,k + h0,k)
− τ

λ
.

Denote

τ∗0 = τ (0)n0
= min

n∈{1,...,7}

{

τ (0)n

}

, ω∗
0 = ωn0

.

By a simple computation, one get that

sign

{

d(Reλ)

dτ

}

τ=τ∗
0

= sign

{

Re

(

dλ

dτ

)−1
}

τ=τ∗
1,0

= sign

{

d′(z∗n)

L(ω∗
0)

}

,

where z∗n = ω∗
0
2. The results from the discussion above are as follows.

Theorem 5. Assume that a < γ0g1
(g1Y ∗+g2)2

− s(δ1 − 1) + δ1.

(i) The economic equilibrium E∗ of system (28) is locally asymptotically stable for all τ > 0, if
d(z) = 0 has no positive roots.

(ii) If sign {d′(z∗n)/L(ω∗
0)} > 0, then system (28) undergoes a Hopf bifurcation at E∗ when τ = τ∗0 .

Further, the economic equilibrium E∗ of system (28) is unstable for τ > τ∗0 and locally
asymptotically stable for τ ∈ [0, τ∗0 ).

4. Conclusion

Despite the fact that there have been several publications exploring the stability and bifurcation in
delayed IS-LM models, the majority of them do not take into account the diffusion effects that are
unavoidable in economics and the money supply as endogenous variable in the same time. In this article,
we have proposed and analyzed a diffusive IS-LM model with two temporal delays in gross product,
capital stock and the endogenous money supply. We have firstly established the mathematical and
economic soundness of the suggested model. In addition, we have studied the stability criteria for the
equilibrium. By using the delay as a bifurcation parameter, it was shown that the economic equilibrium
loses stability when the delay crosses a crucial point, leading to a Hopf bifurcation.
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Узагальнена дифузiйна модель бiзнес-циклу IS-LM
iз затримками валового продукту та капiталу

Елькармучi М.1, Хаттаф К.1,2, Юсфi Н.1
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Факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки,

п.с. 7955 Сiдi Осман, Касабланка, Марокко
2Дослiдницька група з моделювання та викладання математики (ERMEM),

Регiональний центр освiти i пiдготовки професiй,
20340 Дерб Галеф, Касабланка, Марокко

У статтi пропонується модель бiзнес-циклу IS-LM iз дифузiйним i вiдстроченим про-
цесом iз вiдсотковою ставкою, загальними iнвестицiями та пропозицiєю грошей за
однорiдних граничних умов Неймана. Часовi затримки вiдповiдно включенi до ос-
новного капiталу та валового продукту. Спочатку продемонстровано обґрунтування
математичної та економiчної моделi. Шляхом дослiдження вiдповiдного характери-
стичного рiвняння доведено локальну стiйкiсть економiчної рiвноваги та iснування
бiфуркацiї Хопфа.

Ключовi слова: економiка; дифузiя; стабiльнiсть; затримки часу; бiфуркацiя
Хопфа.
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