odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 11, No. 2, pp. 470-480 (2024) I\/I @P”ti"g

athematical

A generalized diffusive IS-LM business cycle model with delays
in gross product and capital stock

Elkarmouchi M.', Hattaf K.1'2, Yousfi N.!

L Laboratory of Analysis, Modeling and Simulation (LAMS),
Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca,
P.O. Box 7955 Sidi Othman, Casablanca, Morocco
2Equipe de Recherche en Modélisation et Enseignement des Mathématiques (ERMEM),
Centre Régional des Métiers de I’Education et de la Formation (CRMEF),
20340 Derb Ghalef, Casablanca, Morocco

(Received 4 January 2024; Revised 28 April 2024; Accepted 3 May 2024)

In this paper, we suggest a diffusive and delayed IS-LM business cycle model with inter-
est rate, general investment and money supply under homogeneous Neumann boundary
conditions. The time delays are respectively incorporated into capital stock and gross
product. We first demonstrate the model’s sound mathematical and economic posing. By
examining the corresponding characteristic equation, the local stability of the economic
equilibrium and the existence of Hopf bifurcation are proved.
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1. Introduction

In recent years, partial differential equations (PDEs) play an essential role to understand the dynam-
ics of business cycles. In 2023, Elkarmouchi et al. [1] developed an IS-LM model that explains the
spatiotemporal dynamics of business cycle under the services and goods market as well as the money
market by taking the money supply as a constant. Such model includes numerous economic models
that are known to exist in the literature like [2—4].

In general, we can say that the are two schools of economics that determine the nature of money
supply. The first one is Chicago school that considers the money supply as an exogenous variable
for the reason that the monetary authority can regulate and observe it, which is taken into account
in some recent works [4-6]. The second one is Keynesian school views it as an endogenous variable
because the monetary expansion as a result of different economic or non-economic factors, this idea is
presented in some recent studies like [7-9].

In this paper by incorporating endogenous money supply, we suggest a diffusive IS-LM model with
a two-delay capital accumulation equation. The first delay refers to the time delay between the decision
to invest and when it is implemented, whereas the second one represents the period of time it takes for
an investment to be produced. The system of nonlinear PDEs or reaction-diffusion equations below
provides the model.

( 88—1/ = d1AY (t,z) + « [I(Y(t,:n),K(t,aj), R(t,x)) + G(Y (t,x)) =T (Y (t,z)) — S(YD)] ,

86—[: = dgAK(t,ZE) + I(Y(t - Tla$)7K(t - 7—2733)7 R(t,l’)) - 5K(t7$)’ (1)
88_1: = dsAR(t,z) + BIL(Y (t,2), R(t,x)) — M(t, )],
%_f‘f — Al AM(t,2) + Y M(t,2)[G(Y (t,2)) = T(Y (t,2)),

where the economic variables, Y (¢,z), K(t,z), R(t,z) and M (t,z) indicate the gross product, the
capital stock, the interest rate and the money supply at location x and time ¢, respectively. The
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diffusion coefficients of Y, K, R and M are di, da, d3 and dy4, respectively, and A means the Laplacian
operator. The demand for money or liquidity preference function is marked by L(Y, R) while the
investment is noted by I(Y, K, R). The parameter « presents the adjustment coefficient in the goods
market while 3 indicates the coefficient of adjustment in the money market. G(Y), T(Y) and Y =
Y — T(Y) refer to the Government expenditure, tax income and discretionary income, respectively.
Finally, ¢ is depreciation rate of the capital stock and 1 is the adjustment coefficient in public funds.
Additionally, we take into account the model (1) with initial conditions:

Y(t7$) = <I>1(t,l’), K(t7$) = (1)2(t7$)7 R(t7$) = (1)3(t7$)7 M(t,ﬂj‘) = <I>4(t7$)7 (t,ﬂj‘) € [_7_7 0] X ﬁv (2)
and Neumann boundary conditions:

oYy 0K OR O0M

8]/ a]/ a]/ 8—]/ = 0, on (0, +OO) X aQ, (3)

in which 7 = max{r, 72}, % means the outward normal derivative on the smooth boundary 92 and
Q) indicates the market capacity.

The remainder of the document is structured as below. In Section 2, we give some preliminary
findings including the existence and the uniqueness of solutions of our model (1) also the existence of
economic equilibrium. The characteristic equation of this system is examined in Section 3 through the
construction a basis of phase space based on the eigenvectors of the Laplace operator. Local stability
is proved, as well as the existence of Hopf bifurcation. The last section offers a brief conclusion.

2. Preliminary results

As in [4,6,8], before realizing the remainder, the following specific functions will be utilized:
e Savings S:
S(YP)=5YP,
where 0 < s < 1;
e Government expenditure G:
70
GY)=Gy+ ——,
@) QY + g2
where Gq represents positive autonomous public expenditure and =g, g1, go are positive parameters

regulating G is susceptibility to changes in Y
e Tax income 71"
T(Y) = 61Y,
where 01 (0 < §; < 1) is tax rate;
e Liquidity preference L:
L(Y,R) = £(Y) — R,

in which « represents the variation of demand of liquidity in relation to interest rate.

Let X = C (ﬁ, R4) be the Banach space of continuous functions from Q into R* and C =
C ([-7,0],X) be the Banach space of continuous functions of [—7,0] into X with standard uniform
topology. For the sake of simplicity, we denote an element ¢ € C and define it as a function from
[~7,0] x © into R* defined by ¢(s,z) = ¢(s)(x). For any continuous function w(-): [~7,b) — X for
b >0, we set wy € C by wi(s) =w(t+s) for s € [—7,0].

Theorem 1. For each given initial ® = (®1,®y, ®3,®4)" € C, there exists a unique solution of
problem (1)—-(3) defined on [0, +c0).
Proof. For each ¢ = (¢1, 02, 03, ¢4)7 € C and z € Q, we define G = (G1,Ga, G3,Gy): C — X by

él((p)(gj) =« 1(901(07:17)7902(07:17)7903(07:17)) + GO + 91901(07%

Ga(p)(x) = I(p1 (=71, @), 02(—T2, 2),03(0,2)) — 002 (0, z),
Gs(p)(x) = BIL(p1(0,2)) — vp3(0,2) — ©4(0, )],
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Ga(e) (@) = a0, 2) [Go b hi(0.5)

The following abstract functional differential equation can therefore be used to rewrite the problem (1)—
(3),
n'(t) = Fn(t) + G(n), t >0 (@)
n(0) = € C,
where n = (Y, K, R, M)T and Fn = (diAY,dyAK,d3AR,dyAM)T. 1t is apparent that G is locally
Lipschitz in C, and as in [10], we draw the conclusion that the problem (4) has a unique local solution
on [0, Tynax), where Tax denotes the maximal existence time for solution of system (4). ]
We need the following hypothesis in order to investigate whether the model’s economic equilib-
rium (1) exists:

Gog1 — 0 5 Gogr)? + 46 yP
(Hy) [ Gogr— g2 + V(6192 + Gog1)? + 191707 s 0] —s@EP) >o.
25191 1)
Theorem 2. If (H;) holds, then (1) has a wunique economic equilibrium defined by

. . Gog1—90 é G 2445 - * . ..
E*(Y*,K*,R*,M*), in which Y* = 091 1924/ 2152; 0g1)°+ L0 R = M} R* is the positive

solution of the subsequent equation

7 Gogr — 0192 + /(6192 + Gog1)? + 461170 s(1—61)Y
20191 ’ d

,R) - 8(1 - 51)Y = 0,

and M* = L(Y*) — yR*.
Proof. For the aforementioned system with certain functional forms, the unique equilibrium point is
represented by the solution of the subsequent equations:

I(Y,K,R) = S(Y"P), (5)
I(Y,K,R) = 0K, (6)
L(Y)—~FR— M =0, (7)
Q) =T(Y). ®)
From (8),
v — Gogr — 0192 + /(6192 + Gog1)? + 461170 (9)
- 20191 ’

and from (5)—(6) we get

K= w (10)

By replacing (9) and (10) into the first equation (5), one can get

7 Gog1 — 6192 + /(0192 + Gog1)? + 4619170 s(1 —61)Y
20191 ’ )

Let @ be the function defined on the interval [0, +00) by

-9 0 24+ 46 1-6)Y
QR) = I <G091 192 +/( 21529+ Gog1)* + 19170 s( 551) ,R) (- )Y,
191

From (H;), we obtain @Q(0) >0, lim Q(R)= —oc and Q' (R) = % < 0.
R—+o00

As a consequence, there exists a unique R* € (0,+00) such that R* is the positive solution of the
equation Q(R) = 0. We get by using (7) M* = L(Y*) — 4R*. This completes the proof. |

,R) - 8(1 - 51)Y = 0.

3. Local stability and Hopf bifurcation analysis

Study the condition of local stability and Hopf bifurcation is what this part is all about. Let y =Y —-Y*,
k=K—K* r=R—R*and m = M — M*. One can obtain the linear part of (1) as follows
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dy Y091
g = diAy(t,z) + a [(a TGV + o) + (s(01 = 1) = 51)) y(t, x) + bk(t, ) + cr(t, z) |,
5 = doAk(t,z) + ay(t — 11, ) + bk(t — 72, 2) — 0k(t, x) + cr(t, ),
0
8—: = dsAr(t,x) + Blly(t,x) — yr(t,x) — (11)
om . Y091 }
—— = dyAm(t M -0
X mémc)gﬁ [(glngQ ]
dy r_om _
v v v v 0, z€df, >0,

where a = IL(V*, K* | R*), b= JL(Y*, K* R*), c = ZL(Y*, K*,R*) and |, = L'(Y*).
Letting ¢ = C([—7,0], X) represent the Banach space of continuous functions of [—7,0] into X,
where X is defined by

ov ov ov v

with the inner product (-,-). Therefore, system (11) can be recast as an abstract differential equation
in the phase space ¢ as below,

¥ = {y,k,r,m e W22(Q): Oy(t,z)  Ok(t,z) Or(t,x) Omlt,x) _0, e GQ},

W'(t) = DAW + L(Wy), (12)
where W = (y, k,r,m)”, D = diag(dy, ds, d3,ds) and L: ( — X defined by
L(¢) = Aop(0) + A1(—71) + A20(—72), (13)
with
oz(a %5—1—8(51—1)—51) ab ac 0 00 0 0
0 1) c 0 a 0 0 0
Ao = Bl 0 —By -8\’ Ar=100 0 o0
| ____ 001 _ 0 0 0O
UM |~ — 6 00 0
and
00 0O
0 b 00O
A2=10 0 0 0
0000

The characteristic of (12) is as below
Ay — DAy — L(e)‘y) =0, yedom(A)\{0}. (14)

Let the eigenvalue of the operator A under the Neumann boundary conditions on X be —k? (k € N),
then the corresponding eigenvectors have the subsequent shape:

Vi 0 0 0
0 0 0

=1 | di=| o | A= L, | s=| g |- m=costha), keN
0 0 0 Yk

+oo

and a basis for the phase space X is constructed by {ﬁé,ﬁg,ﬁg’,ﬁf; r—o- The phase space X can
therefore be expanded in the form of Fourier, as shown below

N
_ T k _ Y, P

Y= kZ:on ﬁ]?; , Y= <y75]:€;> . (15)
p (y: Be)
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Then by calculation, we obtain

By K
Bi r| 5
clet | % || = | % |, wew (16)
& ;
/Bk Bk
Substituting (16) and (15) into (14),
. i
> Y [(My + DE?) — A] - 5| =0 (17)
i
k
aa— % +s(61 — 1) — 61) ab ac 0
A ae —5+be 2 ¢ 0
Bl 0 —By =B
* 91
VM| — o — 01 0 0 0

The following is the characteristic equation of (17)

A+ N3k + N2go s + gk + Gog + [RaA® + ho g A + Ry g + hogle A2+
[7‘2)\2 + Tl,k)\ + TO,k] 6_)‘71 = U, (18)

where

g3x = dik? — a <a - ﬁ T —1) — 51> - dok® 4+ 6+ dsk® + By + dak?,

gox = —Bliac+ (dok? + 8)(dsk® + By + dsk?) + dak*(dsk* + 57)

+ [dok? + 8 + dsk? + By + dak?] [dlkz —a <a = ﬁ + (61 — 1) — 51>] :

_ 2 2 * Y091 2
g1,k = —Bliac(b + dok™ + 0 + d4k*) — BY M ac [m + 51] + dyk

[d1k2 —a <a - ﬁ +(s(6 — 1) — 51)>] (dsk? + B7) + (dok? + 0)

(dak? + dsk® + B) [d1k2 —a <a - (%% +s(6 — 1) — 51>] ,

g1Y* + g2)
o = —dik?Bliabe — Blyacd k> (dak? + 8) — by M* ac [% + 51}
T (d5h? + ) (dak + 6) [dlkz o <a sl 1) - &ﬂ
duk?® — By M*ac { o Yloil it 51] (dok? + ),
hs = —b,
hoj = — [d1k2 — <a — ﬁ +5(6, — 1) — 61> + dsk® + By + d4k2] b,
hg = [ﬁllac — (dsk® + B) [dle —a <a - ﬁ Fs(—1) — 51>H b
— [d4k:2 <d1k2 —a <a - ﬁ +5(6p —1) — 51> + dsk® + 67)] b
ho = —bdyk*(dsk? + 37) [d1k2 —a <a - ﬁ s —1) — 51”
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Y091
+ | Bliacdsk? + By M*ac | ————— 4+ 6, ) | b,
Placd, oYM ac <(91Y* + g2)? 1>]

r9 = —ab,
ri = —ab(dsk® + By + dik?),
ro; = —abdak? (dsk® + B7).
A = 0 is not a solution to Eq. (18) for k& € N.
When 71 = 7 = 0, the equation (18) is
X X2 (ga ke + ) + A2 (g2 + 72 + ho k) + Mgk + 71+ hig) + gok + 7o+ hor =0 (19)

If a < % — 5(61 — 1) + 81, then the coefficients of equation (19) satisfy:

g3k +h3>0, gor+ro+hor>0, (g3k+h3)(gor+re+hor)>(91k+71+ hik)
(93,6 + h3)(go + 72 + hop) (g1 + 11+ hig) > (935 + h3)* (o + 70 + hog) + (g1 + 71 + hag)?.

According to the Routh-Hurwitz criterion, we find that the economic equilibrium E* of system (1) is
locally stable when 7 = 15 = 0.

31. Case1: 7 =0, 11 #0
Now, when 75 = 0 and 71 # 0 Eq. (18) corresponds to the subsequent equation:

AN X3 (hg + g3 1) + N (hog + go.) + Ahi g + g1k) + o + hog + [12A2 + 11 kA + 1o 4] e = 0. (20)

Suppose that Eq. (20) has a pair of conjugate purely imaginary roots B + iw(w > 0). Substituting
A =iw(w > 0) into (20) and separating the imaginary and real parts, it is evident that
{ wh— w2(927k +hog) + gok + hor = (row? — To,k) Co8(wT1) — wry k sin(wTy), (21)
W3 (gsk + hax) — w(grr + hig) = (raw? — ro k) sin(wry) + wry g cos(wTy).
Therefore, the existence of purely imaginary roots of Eq. (20) is identical to the existence of solutions
of Eq. (21). Define
B(w) = (rw? — To,k)2 + risz. (22)
If £ # 0, then by Eq. (21), we get
(row? — o) M(w) — rigwlw?® — w?(gox + ha) + gox + hol

sin(wm) = F) ,
M 2_ 4y h h
cos(wty) = wreM{w)  (raw To,k)[WE(w)w (92 & P & o + OJC]’ (23)

where
M(w) = w(gsk + har) —w(grk + hig).
Two equations of (23) are squared and added, and it results that
E*(w) = [(raw? = 1o )M (w) — rigwlw® — w?(gos + hog) + ok + ho,k]]2
+ [wr M (w) + (row® — 7o) [w* — W (g2k + hak) + 9ok + hO,kH2
Denote
W(w) = B2(w) — [(row® — ro ) M(w) — 11 4w [w* — w?(gax + hax) + dok + hox]]”
— [wripM (W) + (rew? — o) [w* — w?(gok + hog) + ok + hoJ@H2 - (24)
By calculations, we get from (22) and (24) that
W(w) = fraw'? + frow' + fsw® + fow® + faw® + fow® + f, (25)
where
fi2 = —7‘57
f10 =215 (g2 + hag) + 75 (hs ke + gs.k)° — 71 ks
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fe =75 +2r3(gsk + haw) (hag + gui) + [2roros — r1iel (93, + haw)® — 765 — (92,6 + hoi)’r3
+ 1207 1, — 2r0k72) (92,6 + P2k) — 2(hok + Gok)73,

fo = [2r1e — 4roror)(gsk + hag) (g + guk) + 2(92,% + hog) (ho g + o753
+ [2ropr2 — 208 W) (ho s + Gog) + (270,672 — 71 1) (92,6 + Pok)? + (g3, + hak)?
10k + 218 1 (92, + hog) — 73 (g1k + h1g)?,

fo=r1p—4r3rg g+ 2raro (g + 1) — 2ro(hag + 91k) (93,6 + hs k)
[2r7 ), — 4roera)(hok + gok) (92,6 + hok) — rik(Pik + 916)” — (90 + hok)”
75 — 16 (92,6 + h2g)? — (hok + gok)T0,k

fo=rox(hig + 916)° + [rig + 2rowr2](hok + gok)? + 2(hok + go) (92,6 + hok),

f=r41— (hok + 9ok)’r5 k-

Let z = w?, Eq. (24) can be expressed as

h(z) = f12z6 + f10Z5 + f824 + f6Z3 + f4Z2 + foz + f =0. (26)
Clearly, if a < % — 5(61 — 1) + 01 and h(z) = 0 has no positive roots, then the economic

equilibrium E* of system (1) is locally asymptotically stable for all 71 > 0. Otherwise, for a certain
ko € N, if Eq. (26) has positive roots, without losing the ability to generalize, we suppose that Eq. (26)
with k& = ko has six positive roots, namely z,(n = 1,...,6). Consequently, Eq. (24) has six positive
roots wy, = /Zp, (n=1,...,6).
For n = 1,...,6, one can extract the matching Tfn > 0 from (21) such that (20) has a pair of
purely imaginary roots +iw, offered by ’
Tfn = i arccos w1 M (wn) + (TW% _ To,k) [w% _ w%(gz,k *har) + g0k + ho’k] + @, jeN. (27)
’ W, E(wy) W,
Let the root of Eq. (20) be A(m1) = &(m1) + iw(71) satisfying S(Tfn) =0, w(Tfn) = wy,. We now
investigate the existence of Hopf bifurcation [11]. To this end, differentiating two sides of (20) with
respect to 71. Thus, it follows

AANTH AN+ 3% (gsk + ha) + 2M\(g2.k + haw) + (914 + Pak) N 2roX + 71k o
dry N )\(7‘2/\2 + 7‘1,]@/\ + r07k)e—)‘71 /\(Tg)\z + 7‘1,]@)\ + T07k) A
Denote
SN () [ ©) x
71,0 = T1,ng nEI{Tllvlﬁﬁ} {Tl,n}v Wo = Wnyg-

By a simple computation, one get that

-1 (%
sign d(Re)) = sign ¢ Re dA = sign W z0) )
dr — dr — E(wg)

where 2z = w82. The results from the discussion above are as follows.

Theorem 3. For 5 = 0, suppose that a < % —s(01 — 1)+ 1.

(i) The economic equilibrium E* of system (1) is locally asymptotically stable for all 71 > 0, if
h(z) = 0 has no positive roots.

(ii) Ifsign{h'(z;)/E(wgs)} > 0, then system (1) undergoes a Hopf bifurcation at E* when 7 = 7{ .
Furthermore, the economic equilibrium E* of system (1) is unstable for 7 > 1o and locally
asymptotically stable for T € 0,71 ).

3.2. Case 2: 7 #0, 11 #0

In this subsection, we study Eq. (18) with 72 > 0 and 7y in the stable regions. We take 7, as a
parameter of bifurcation. By Ruan and Wei [12], we have the subsequent lemma.
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Lemma 1. If all roots of equation (20) have negative real parts for 7 > 0, then there exists a
75 (m1) > 0, such that when 0 < 7o < 75(71) all roots of equation (18) have negative real parts.

Proof. The left side of the equation (18) is analytical in A and 72. According to [12], the sum of the
multiplicities of zeros on the left side of Eq. (18) in the open right half-plane can change when 75 varies
only if a zero is on or crosses the imaginary axis. ]

Theorem 4. Let 7y in the stable regions and a < % — s(01 — 1) + 1. Then we have

(i) There exists a 75 (11) such that the economic equilibrium E* is locally asymptotically stable
for 19 € [0, 75 (1)) when h(z) = 0 has no positive roots.

(ii) For any 11 € [0,71), there exists a 75 (1) such that the economic equilibrium E* is locally
asymptotically stable for To € [0,75(71)) when sign {h'(z})/E(w§)} > 0.

Proof. Theorem 3 (i) and Lemma 1 lead directly to the proof of (i). Now, we prove (ii). Assume that
sign {h'(z})/E(w§)} > 0 and we conclude using Theorem 3 that E* is locally asymptotically stable for
71 € [0,71,0). Therefore, all roots of Eq. (20) have negative real parts. It follows from Lemma 1, that
there exists a 75 (1) > 0, such that when 0 < 7 < 75(71) all roots of equation (18) have negative real
parts. Thus, when 75 € [0, 75 (71)) we find that E* is locally asymptotically stable. |

3.3. Special case

We examine the following IS-LM model in this subsection:

. 88_1; — i AY (t,2) + a [I(Y (t,2), K (t,2), R(t,2)) + G(Y (t,2)) = T(Y (t,z)) — S(Y )],
88—[; = b AK(t,x) + 1(Y(t —7,2),K(t — 7,7), R(t,2)) — 0K (t, ), o
aa—]f = d3AR(t,z) + BIL(Y (t,x), R(t,x)) — M(t,z)],

{ aa—]\f = dyAM(t,z) + VM (t,z)[G(Y (t,2)) — T(Y(t,2))],

This system is a special case of system (1) with 71 = 79 = 7. The following conclusions are drawn from
Theorems 1 and 2.

Corollary 1.

(i) There exists a unique solution of problem (28) defined on [0, +00) for any given initial ® € C.
(ii) If (Hi) holds, then (28) has a unique economic equilibrium defined by E*(Y*, K*, R*, M™*),

Gog1—51gz+\/(5192 +Gog1)2+4519170 s(1—81)Y*
* ol—
where Y* = 55191 , K = ———

, R* is the positive solution of
the subsequent equation

7 Gog1 — 6192 + /(0192 + Gog1)? + 4619170 s(1 —61)Y
20191 ’ d

,R) - 8(1 - 51)Y =0
and M* = L(Y*) — yR*.

The system stability analysis (28) is the subject of the following discussion. In this case, Eq. (18)
becomes

M+ N3gs 1+ N go g+ Ak + gog + e [hsA + (ra + ho g )A% + (R + 71 8)A + ho g + 7o) = 0, (29)

When 7 = 0, all roots of Eq. (29) have negative real parts if a < (VO% —5(01 — 1) + d1. Then the

91Y*+g2)
economic equilibrium is locally asymptotically stable.

For 7 > 0, let iw (w > 0) is a root of (29), then we obtain

—wt+ wzgg,k — 9ok = T cos(wt) + Ty sin(wT), (30)
wggg,k —wgi = To cos(wt) — T sin(wT),
where

Ty = 1ok +hog — w?(hog +12), To= (rig+higp)w —wihs.
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Therefore, the existence of purely imaginary roots of Eq. (20) is equivalent to the existence of solutions
of Eq. (30). Define

L(w) =Ty + T3 (31)
If L # 0, then by Eq. (21), we get
To(w’gs e —wgr k) + Ti(—w' + w292k — gok)

cos(wt) = ) ) (32)
. _ Do(—w* + w9k — go) — T1(w3gs e — wgr k)
sin(wr) = L) .

Two equations of (32) are squared and added, and it results that
L2 (w) = [Ta(—w* + w?gay — gox) — T1(wPgs s — wg1,k)]2
+ [Ta(wgsr — wgr k) + Ti(—w?* + wigoy, — 90,k)]2 . (33)
Denote
V(w) = LA(w) — [To(—w* + w?gak — gox) — Ti(wPgsr — wgrp)]”
— [Ta(wPgs s — wgrx) + Ti(—w* + wgar — gox)]” - (34)
By calculations, we get from (31) and (34) that
V(w) = vigw® 4+ v19w'? + 010w + vgw® + vew® + vaw? + vow? + v, (35)
where
vy = —h3,
vig = b3 + 2h3(r1 g + hig) + 2h3gak — (hog +72)% — h§g§,k,
vig = 203 (hog +12)% — 283 (hy g + 71 %) — 4h3(hig +71k) — (Pag +710) — hagor(hig +71%)
— h3(g2. + 290,6) — (r2 + ho k)95 4 + 2hsg3k(ha g + r1k) + 20391k + 2(hag + 72) (hok
+ 7o) + 292, (hok + 12)7,
vg = 4h3(r1 g + hug)® — 4h3(r2 + o) (roe + hog) + (ha + 12)* — 4hs(ra + ho k) (r1 g, + hag)
+ 200k (r1 e + hag) + 2hs(r1 g + hak) (92,6 + 290.%) + 290592605 + 205 1 (r2 + hay)
(hoje + T0,k) + 293,691k (h1 ke +72)* — (hig + r1%)205% — ha(hak + T1k)93,691% — 91 k13
— (hok +70k)? — 4g2.k(hok +7ok) (r2 + hok) — (92,6 + 290,k) (T2 + hok)?,
v = —4hs(r1 e + hig)? = (i + hae)* (92,0 + 290,) — 4h3(r1 g + Pak)go,k92,6 — R3G90k
— (roe + how) g3k — 493,691k (i + o) (2 + hag) — (hog + r2k) g1k + 2(ha e + 718)°
93091k + 2h3(hi g + 116)95 & + 2920 (hok + To.k)” + 292, (ho s + To) (o + 72) + 4gok
(hok + r0.k) (ha g + 72) + gokg2k(hok +72)°,
v = (rie + hig) — 290,692,611 + Puk)® + ha(r + Puk) g6 n + 2930916 (hoe + Tok)? + 291k
(how +72)(hok +Tok) = (r1e + hik)*97 k — (92,6 + 290,) (hok + Tok)” — 490,82,k
(roge + hok) (hage +12) — (hag +72)g5 1
ve = —g1%(Tok + hok)? + 290.k92.k (Tok + hok)® + (Tok + ho k) (hak +72)
go.kg2,k + 2(ro s + ho) (hag + 12)95 1 + 2(hok + rok)* (hak + 72),
v = (hos + o) + gok(hos + o) + (g +71k)° G0 5
Let z = w?, Eq. (34) can be written as

d(z) := V142" + 01228 + 0102° 4+ vs2t + V62> + V422 + v9z + v = 0. (36)
Clearly, if a < %g — (01 —1) 4+ 41 and d(z) = 0 has no positive roots, then E* of (28) is locally

asymptotically stable for all 7 > 0. Otherwise, for a certain ky € N, if Eq. (36) has positive roots,
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without loss of generality, we suppose that Eq. (36) with k = k¢ has seven positive roots, noted, z,
(n=1,...,7). Accordingly, Eq. (34) has seven positive roots w, = \/z, (n =1,...,7).

For n =1,...,7, one can extract the matching 73 > 0 from (30) such that (29) has a pair of purely
imaginary roots +iw, stated by

1 To(w3gs  — Ti(—wp + wlgok — 21
7 = L arccos b(Wngsk — Wngik) + T1i(—wy, +wigak — Jok) v 0, (37
W, L(wy) Wn,

Let the root of Eq. (29) be A(7) = &(7) + iw(r) satisfying £(73) = 0, w(7) = wy. Now, differentiating
both sides of (29) with respect to 7 leads to

(%) - _ AN3 4+ 3N2g3 i + 2Mgok + g1k
dr AN3hg + (hog + 12)N2 + (11 + hag) X+ 7o + hog)e

n 3/\2h3 + 2(7"2 + h2,k))‘ + h17k +rik T
AN3hg + (ho g +12)A2 + (r1 + RN+ 1ok + hogk) A

Denote

By a simple computation, one get that

_ [d(Re)) . day ! _ ()
(B2 —nfu(2)'] i)
T=T1,0

where 2% = wi?. The results from the discussion above are as follows.

Theorem 5. Assume that a < % —s(01 — 1)+ 61.

(i) The economic equilibrium E* of system (28) is locally asymptotically stable for all T > 0, if
d(z) = 0 has no positive roots.

(ii) Ifsign{d'(z})/L(w§)} > 0, then system (28) undergoes a Hopf bifurcation at E* when T = 7.
Further, the economic equilibrium E* of system (28) is unstable for T > 75 and locally
asymptotically stable for T € [0, 715).

4. Conclusion

Despite the fact that there have been several publications exploring the stability and bifurcation in
delayed IS-LM models, the majority of them do not take into account the diffusion effects that are
unavoidable in economics and the money supply as endogenous variable in the same time. In this article,
we have proposed and analyzed a diffusive IS-LM model with two temporal delays in gross product,
capital stock and the endogenous money supply. We have firstly established the mathematical and
economic soundness of the suggested model. In addition, we have studied the stability criteria for the
equilibrium. By using the delay as a bifurcation parameter, it was shown that the economic equilibrium
loses stability when the delay crosses a crucial point, leading to a Hopf bifurcation.
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V3aranbHeHa gudpysiiiHa mogenb bisHec-umkny IS-LM
I3 3aTpUMKaMu BaJIOBOro NpoAykKTy Ta Kanitany

Enskapmyui M.!, Xarradp K.52, FOcdi H.!

LTa6opamopia ananisy, moderrocanmna ma cumymosarns (LAMS),
Daxyavmem nayx Ben M’Cix, Ynisepcumem Xacana II Kacabararxu,
n.c. 7955 Cidi Ocman, Kacabararxa, Mapokko
2 JTocaionuyvrka epyna 3 modearosarma ma cuxaadarns mamemamury (ERMEM),
Pezionarvruti yenmp oceimu i nidzomosxu npogecit,
20340 Jlep6 TI'aned, Kacabranka, Mapoxko

V crarTi nponoHy€eTbCst MOJIe b OizHec-TuKIIy 1S-LM i3 pudysiitaumM i BicTpoYeHUM Ipo-
IIECOM i3 BIiJICOTKOBOIO CTaBKOIO, 3arajIbHUMU IHBECTUIISAMH Ta IPOIIO3UIEI0 I'POIIEil 3a
omHOpimHUX TpanmdHux ymMoB Heitmana. YacoBi 3aTpuMKN BiIOBIIHO BKJIIOYEHI 7O OC-
HOBHOTO KaIiTa/Iy Ta BAJOBOro TpoiayKTy. CIodYaTKy IpOIEeMOHCTPOBAHO OOI'DYyHTYBaHHS
MaTeMaTUIHOI Ta eKoOHOMiuHOI Mojesr. [IInsaxoM gocsiKeHHsT BiAIIOBITHOIO XapaKTepu-
CTUYHOTO DIBHAHHS JIOBEJIEHO JIOKAJIbHY CTIHKICTh €KOHOMIYHOI piBHOBAru Ta iCHYBaHHS

6idypxrarii Xomnda.

Knwouosi cnosa: exonomira; dugysisa; cmabisvricmy; sampumku wacy; Oidyprayisn
Xonga.
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