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In this paper, we develop a mathematical model using partial differential equations to
investigate the behavior of RNA viruses in the presence of antiviral treatment. The devel-
oped model includes both cell-to-cell and virus-to-cell modes of transmission. Initially, we
establish the well-posedness of the model by demonstrating the existence and uniqueness
of solutions, as well as their positivity and boundedness. Additionally, we identify and
analyze the stable equilibrium states, their global stability depending on specific threshold
parameters, using Lyapunov functions. To corroborate our theoretical findings, we provide
illustrations through numerical simulations.

Keywords: reaction—diffusion; RNA viruses; modes of transmission; mathematical mod-
eling; stability analysis.
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1. Introduction

Coronavirus disease 2019 (COVID-19) resulted from an infection with the SARS-CoV-2 virus. This
pandemic has profoundly affected public health, the global economy, and our daily routines. The
SARS-CoV-2 virus is part of the RNA virus family, known for causing various infectious diseases
such as hepatitis C that is an infection caused by the hepatitis C virus (HCV). On a global scale,
roughly 58 million individuals suffer from a chronic HCV infection, with approximately 1.5 million
new cases emerging annually [1]. There are about 3.2 million young individuals and children living
with a chronic HCV infection [1|. According to the World Health Organization (WHO) [1], in 2019, an
estimated 290 000 lives were lost due to hepatitis C, primarily attributed to conditions like cirrhosis and
hepatocellular carcinoma, the most common form of liver cancer. The human immunodeficiency virus
(HIV) is classified as an RNA virus as well. It continues to be a significant global public health concern,
having resulted in the loss of approximately 40.4 million lives thus far, with ongoing transmission
occurring in all countries worldwide [2|. As of the end of 2022, it is estimated that there were around
39 million individuals living with HIV, with two-thirds of them (25.6 million) located in the WHO
African Region [2]. In the same year, approximately 630000 (ranging from 480000 to 880 000) people
succumbed to HIV-related causes, while 1.3 million (ranging from 1.0 million to 1.7 million) individuals
acquired the virus [2].

The SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. It belongs to
the coronavirus family, including other viruses such as SARS-CoV and MERS-CoV. It has a higher
morbidity compared to other coronaviruses and can cause acute respiratory tract infections with extra-
pulmonary involvement, such as cardiovascular complications and multi-organ failure [3]. The virus has
a genomic organization similar to other coronaviruses, with a set of core genes that encode replicase-
structure proteins and has a high transmission rate [3|. It is worth mentioning that this virus persists
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in its transmission through emerging variants, one of which is EG5. The latter has been classified as
a variant of interest by WHO [4]. Due to this high transmission, over 70 million cases have been so
far attacked by COVID-19, 7 million of whom have died [5]. Efforts are underway to develop effective
antiviral drugs and vaccines to control and eradicate SARS-CoV-2.

Mathematical modeling is of importance for comprehending and characterizing the dynamics of
RNA virus-induced infectious diseases. One of the first model was introduced by Perelson et al. [6].
Nowak and May [7] have also come up with another model to investigate the behavior of HIV infection.
In 2020, Hattaf and Yousfi [8] proposed a new mathematical model that investigate the dynamics of
SARS-CoV-2. In 2023, Hattaf et al. [9] introduced an additional model exploring the dynamics of the
SARS-CoV-2 virus, incorporating the influence of antiviral treatment. All these models are based on
systems only governed by ordinary differential equations (ODEs). Undoubtedly, they have contributed
to the understanding of viruses-related issues. However, they assumed that cells and viruses are
uniformly distributed and their mobility was neglected.

To understand the above factors, we propose a mathematical model governed by partial differential
equations (PDEs) with reaction-diffusion to provide a description of the temporal and spatial pattern
of RNA viruses like SARS-CoV-2. Our model takes into account the lytic and non-lytic effects of the
humoral immunity and both cell-to-cell and virus-to-cell modes of transmission in the presence of the
cure of infected cells and the antiviral treatment. The following system of nonlinear PDEs is used to
define this model:

- o oo e AU

o A2 SRR e

5 = BAL+0L(w, ) = p3l(x,1), D
@a_j — AV + k(1 — &) I(@,t) — paV (, ) — pV (2, )W (x, 1),

aa_VtV = ds AW + 7V (2, t)W (x,t) — pusW(x, 1),

where S(z,t), L(z,t), I(z,t), V(z,t) and W(z,t) are the densities of uninfected cells, latently infected
cells, infected cells, free viruses and antibodies at position x and time ¢, respectively. Uninfected cells
are produced at rate o, die at rate 1.5 and return into infected through exposure to free virus particles
at a rate $1.SV or by direct contact with infected cells at rate $351. The two modes of transmission
are inhibited by non-lytic humoral immune response at rate 1 + ¢; W and 1 4 goW, respectively. The
latently infected cells (L) die at rate usL, return to the uninfected state at rate pL, which occurs
through the clearance of the virus via a non-cytolytic process and transform into productively infected
cells with a rate determined by dL. The productively infected cells (I) die at rate pusl. Free viruses
are generated as a result of infected cells at a rate of kI. The virus rate clearance is u4V. The viruses
are neutralized by antibodies at a rate of pVVW. Antibodies are generated in response to free viruses
at a rate of rVW and degrade at a rate of usW. The parameter ¢ signifies the efficacy of the antiviral
treatment, which inhibits the production of viral particles. The diffusion coefficients for uninfected
cells, latently infected cells, infected cells, free viruses, and antibodies are denoted as di, do, ds3, d4,
and ds, respectively.
We consider the initial values and Neumann boundary conditions as follows

S(x,0) =P1(z) 20, L(z,0) = P2(x) 20, I(x,0) =P3(x) >0, V(z,0)=Py(x) >0

and W(z,0) = ®5(x) >0, €9, )

0s _or _or_ov _ow _

on on Om On On
where € is a bounded domain in R™ with smooth boundary 9 and % is an outward normal vector

of 00.

t>0, xe€od,
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The rest of the paper is organized as follows. The well-posedness of our model demonstrated by
showing the existence and uniqueness of solutions and establishing their non-negativity and bounded-
ness as well as the threshold parameters and equilibria are the main concerns of the next section. The
stability analysis is the focus of the third section. The final one is about the numerical illustration of
the results of our paper.

2. Equilibria and threshold parameters

We consider the Banach space C = [C(Q)]%, where C(Q) is a set of real valued functions on the €,
equipped with the supremum norm. Furthermore, we require the following lemma (see [10]).

Lemma 1. Let consider the system as follows

%—dAu a—bu, xe€Q,t>0,

gt

—u:0, xed, t>0, (3)
on B

u(z,0) = up(x), x €Q,

where a, b and d are the constants with b # 0. Then
u(z,t) < maxug(z)e ™ + g(1 — e,
e b
Moreover, if b > 0, we have

u(z,t) < max{g,ma}uo(:n)} and limsupu(z,t) < —
b e t—+o00 b

Theorem 1. For any initial state ® = (®1, $g, D3, Py, P5) € C that satisfies the condition (2),
there exists a unique solution to the problem (1)—(2). When cells have equal diffusion coefficients
(di = d2 = d3) and dy = ds, this solution is defined over the interval [0,400) and remains both
non-negative and bounded for all t > 0.

Proof. We define the function G = (G1,G2,G3,G4): C — C by:

o _ Big1gs Bagnos
Gi(9) = 05 ¢M;¢1 1ﬁ+¢q1¢¢5 Tt an pP2,
_ b1¢194 20103
C2(0) = 1+ q195 i Q205 (k2 + 0+ )62
Gs(¢) = 0¢2 — psgs,
Gu(¢) = k(1 — €)¢3 — pada — pPags,
G5(¢) = roads — ps s,
for any ¢ = (¢1, P2, P3, P4, ¢5) € C. Then the system (1)—(2) is equivalent to
+ G(t t>0
{ X ace g
where X (t) = (S(t), L(t), I(t), V (), W(t))T and AX = (d1AS, d2AL,d3AI dyAV,dsAW)T. Tt is clear

that G is locally Llpschltz in C Accordlng to [11], we deduce that system (4) have a unique local
solution on its maximal interval of existence [0, tmax). Since 0 = (0,0,0,0,0) is a lower-solution of the
problem (1)—(2), we have S >0, L>0,1>0,V >0and W > 0.

Let Y =S+ L+ I. We assume that d; = dy = ds = d and dy = d5 = d'. From the equations (1),
we obtain

)
S ~AAY <o - p,

Yy ()
on

Y(x,0) = ®1(x) + Po(x) + P3(z), x€Q,
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where p = min{yuq, uo, pu3}. By Lemma 1, we get
Y(z,t) < % + max(®1 (z) + Po(z) + P3(x)) = M, V(z,t) € O x [0, tmax).
€N

Hence Y is bounded on Q x [0, tmax) which it follows that S, L and I are bounded as well. If we set
H =V + 2W, then we have

a—H—d’AHgB—vH,

ot

OH ~0, (6)
on

H(@,0) = ®a(e) + " 05(x), v €0,

where B = k(1 — e)M and v = min{py, p5}. From Lemma 1, we deduce that H is bounded. This
implies both V and W are also bounded. Therefore, it has been established that S, L, I, V and
W are bounded on Q x [0,%y.x). Hence, according to the standard theory for semi-linear parabolic
systems [12] that tpax = +00. This concludes the proof. ]

It is evident that system (1) possesses one infection-free equilibrium Fy = (¢/u1,0,0,0,0). Then
we define the basic reproduction number for our PDE model as follows

od[k(1 —€)B1 + pafPo) (7)
papapa(pz + 064 p)

In biological terms, this threshold parameter signifies the average number of secondary infections

generated by a single productively infected cell at the onset of infection. It can be expressed as

Ro =

the sum of Rg; and Rge, where Rg1 = #}m represents the basic reproduction number
for the virus-to-cell transmission mode and Rgo = m represents the basic reproduction

number for the cell-to-cell transmission mode. If Ry > 1 then model (1) admits an other equilibrium

o T _ o(Ro-1) _ bd0(Ro-1) _ koo(1—e)(Ro—1)
By = (81, L1, 11,11, 0), where 51 = i, In = Gimys I = e tam, and Vi = =0 tomy
When the humoral immune response has not been established, we have V] — us < 0. Therefore,
we introduce another threshold parameter known as the reproduction number for humoral immunity,

which is defined as follows:

4%
R‘ljv = - ) (8)
M5
where i is the average life span of antibodies and V; is the quantity of viruses at the steady state Ej.

So, the number R}V can biologically determine the average number of antibodies activated by viral
particles.

Based on the findings of the paper [9], we demonstrate that if R} > 1 then the model (1) has
an equilibrium point Ey = (S, Lo, I, Vo, W5), where Sy € (0 z — w), Ly = il D I =

Y 1 rkopi (1—e) u2+4o
d(o—p152) _ s _ rké(1—e)(o—p1 S2)—pspaps (p2+90)
13 (p2+9) V2 G and W, .  ppams(p2+d)
Summarizing the above discussions in the following theorem.

Theorem 2. 1. IfRy < 1, then model (1) has a unique infection-free equilibrium Ey = (Sp, 0,0,0,0),
where Sy = 7

M1
2. If Ry > 1, then model (1) has a unique infection equilibrium without humoral immunity
. o Ro—1 do(Ro—1
Ey = (S1,L1,11,V1,0) besides Ey, where S = g L= %, I = m and
vV, = koo(l—e)(Ro-1)
T pspa(p2+o)Ro

3. If RW > 1, then model (1) has a unique infection equilibrium with humoral immunity Es =
(So, Lo, I3, Vo, W3) besides Ey and Ey, where Sy € (O,ﬁ — %@), Ly = 0;2”41_?2 I =
0(o—p1 52) _ i _ rké(1—e)(o—p1 S2)—pspaps (p2+0)
usGuats) 1 V2 = and Wa = PUa s (fiz+0)
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3. Stability analysis

In this section, we analyze the stability of equilibria.

First, we have the following result.
Theorem 3. The infection-free steady state FEy is globally asymptotically stable if Rg < 1 and
becomes unstable if Ry > 1.

Proof. Given the results established by Hattaf and Yousfi in [13|, we consider the following Lyapunov

ﬁo—/]:o l’t

where E = (S,L,1,V,W) is a solution of (1)-(2) and

S p2+6+p . B1So PB1S0 p(S — So+ L)?
Fo SoP I+ V4 W + )
(B) = So <50 4 pa Thi4 250(p1 + p2 +6)
with ®(x) =2 — 1 —Inz, for x > 0. By a simple computation, we have

dLo 1 p pL s plpg+6)L*
dt _/Q{ m<5+50( 1+M2+5)+550>(S %) So(p1 + p2 +90)
715150 928250 p3(p2 + 0 +p) PisB150
_ mVI/V Tt 2WIW + fl(Ro — 1) — WW} dz.
If Rg < 1, then % < 0 with equality if and only if E = Ej. By LaSalle invariance principle [14], we
deduce that Ej is globally asymptotically stable when Rg < 1.

Now, we establish the instability of Ey when Ry > 1. To achieve this, we determine the character-
istic equation around this equilibrium.

The eigenvalues of operator —A on ) with homogeneous Neumann boundary conditions can be
denoted by 0 = A\ < Ay < ... < A\, <.... Let E()\;) represents the eigenspace corresponding to \; in
C*(Q). Consider {¢;;: j = 1,2,...,dim E()\;)} as an orthonormal basis for E();), Y = C}(Q)5 and
Yi; = {cthij: ¢ € R%}. Then

function:

>+L+

dim E(\
Y = @Y and Y; = @ Yij.

The linearized system of system (1) at EO = (50, 0,0,0, 0,) is given by

( 0S
8t =d1AS — ,ulS(x t) + pL(x t) 5250[(%,15) — 5150V($,t),
oL
" d2AL — (p2 + 6+ p)L(z, 1) + B2Sol () + f1.5oV (2, 1),
O — AT+ 5L, 1) — (), (9)
88—‘; = d4AV + k(1 —e)I(x,t) — puaV(x,t),
ow
L at = d5AW /L5W(:E t)
Let NZ = DZ + AoZ, where Z = (S,L,1,V,W)T and the square matrices D and Ag are given by
— 1 p —B2S0  —p1Se O
0 —(u2+d+p) BSo BSe 0
D= diag(dl, dg,dg, d4,d5) and AQ = 0 1) — U3 0 0
0 0 E(l—g) —uy 0
0 0 0 0 — 5

Then the system (9) is equivalent to NZ = DZ + AypZ. Note that, for every i > 1, Y; is invariant
under operator A/ and the set of eigenvalues of N is X = U;>1X;, where X; represents the set of roots
of the characteristic equation det(—A\;D + A — zI). For i = 1, we have A\; = 0 and the characteristic
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equation of the restriction of N to Y7, is given by
(11 + z) (s + 2)Qo(z) = 0, (10)

where
Qo(z) = 2* + (n2 + p3 + pa + 6 + p)x° + (papa — 68250 + (w3 + pa)(p2 + 0 + p))z
+ pspa(pz + 6 + p)(1 — Ro).
As lim Qo(x) = 400 and Qo(0) = uspa(pz2 + 0 + p)(1 — RO) < 0 for RO > 1, it follows that if

T—r+00
Ry > 1, the characteristic equation (10) possesses at least one positive eigenvalue. Consequently, Ey
is unstable when Ry > 1. This concludes the proof. [

Following this, we demonstrate the asymptotic stability of the infection steady states F7 and FEo,
assuming that Rg > 1 and under the additional hypothesis:

1+gW V 1+ @W I
a(v W) (1200 - ) <o (v -w) ({20 - 1) <0 (1)

where I;, V;, and W; represent the respective components of productively infected cells, viruses, and
antibodies in the infection equilibrium FE; for i = 1, 2.

Theorem 4. If condition (H) holds true for By and RY <1< Ro <1+ ”QTT‘S, then the infection
steady state without humoral immunity is globally asymptotically stable and unstable if RW > 1.

Proof. We define a Lyapunov function as follows

ﬁl—/fl xt

where E = (S, L,I,V,W) is a solution of (1)—(2) and
S L ,u2+5—i—p I 151 V1 14
0] Ld — LD —— V1P| —
Fi(B) = 51 <5>+ ! <L1>+ 5 0\ ) T ra—on 0\ W
. pB1S1V1 p(S—581+L—L)
rk(1—e)l 281 (p1 + po + p3)
Then

dL, Sh £1SV B2 ST
it Y 1-2 ) (o= 18— _ L
dt ,A{( S)(J s T+ W L+@W*”)>

L4 1SV B2 ST o+ 0+ p I
1—— — L —_— (1 - = L — sl
+< L><HWJV+1+%W'(W+ﬁ+p)>+ 5 7 ) (0L = psl)

BISIVI Vl pﬁlSﬂ/l
K=o, < V> (k(1 —e)] — paV —pVW) + k(=0 (rVW — usWw)
p

S—S1+L—Li)(c— S — —|—5L}dw.
(M1+M2+M3)51( 1 1) (0 — 1S — (p2 +0)L)
By k(1 —¢)l1 = usV1, 6Ly = p3ly and o = p1S1 + B151Vi + 25111 — pLy = p1S1 + (p2 +6) L1, we get

Ly / { 1 < ppS ) > plpz +0)(L — L)
=1 = S + — L) (S—51)7 —
dt ol S5\ pln RN ( ) (11 + pi2 + p3) St

PsBLST W %4 1%
— (R —1)W ssil-1—- —+ ——— 1 w
o R YW A 1[ w o Gramy Tl
I I
Ll -1- - +———— 1 w
+ (251 1< Il+(1+q2W)Il+( + g2 ))

s, nL SVL, w
— (6} (6} )] )] d(1
&Swﬂ <S>+ (un)* <u+mM0&mL>+ <hV>+ (+”Wﬂ

S LL SILy
- I, |® ) ) d(1 .
%&1[<S>+ &M>+ <ﬂ+%WWJM>+ (+%Wﬂ}m
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From (H), we have

_1_K+(1+QIW2')V 1+Q1W_Q1(W—Wi)<1+Q1W_K><O
Vi (14+aW)Vi  1+qaW; 1+agW \14+aW; V;

11
I <1+q2Wi>I+1+qzw_qz(W—Wi)<1+q2w 1><0 (1)

“1- =4+ — _ =
L (1+@W); 1+ ¢W,; 1+@W \1+¢eW, I

If Ry <1+ “QTM, then it follows that pL; < p1S;. Additionally assuming R}V < 1, we can conclude
that % < 0 with equality if and only if S =Sy, L =Ly, I = I, V =V; and W = 0. This implies
that F4 is globally asymptotically stable when R‘fV 1<Rop<1+ ”2+6

Now, we assumed that RW > 1. The linearized system of system (1) at By = (S1, L1, 11,V1,0,) is

given by

oS

E = dlAS — (,u1 + 51‘/1 + 52[1)5(3},15) -+ pL(l’,t) — 5251](3},15) — 5151‘/(3},15)
+(Br1g1 51 Vi + B2q2S111)W (2, 1),

oL

i do AL + (B1V1 + B2I1)S(z,t) — (p2 + 0 + p)L(x,t) + B2S1I(x,t) + 151V (x,t)
—(Biq151 V1 + P2g2S111)W (,t), (12)

% = d3Al +0L(x,t) — psl(x,t),

%—‘tf = dgAV + k(1 —e)I(x,t) — pusV(x,t) — pViW (z, 1),

ow

5 = ds AW + (rVi — ps)W(z, t).

Let M\Z = DZ + A1 Z, where Z = (S,L,1,V,W)T and the square matrices D and A; are given by
D= diag(dlu d27 d37 d47 d5)7

and
—(p1 + B1Vi + Bo1y) p —B251  —p1S1 L1V + BeqeSiy
B1Vi + Ba1y —(p2+d+p)  B2Si 151 —(B1qiS1Vi + PagaSi1h)
Al = 0 1) — U3 0 0
0 0 k‘(l — 6) — 4 —pV1
0 0 0 0 (rVi — ps)

Then the system (12) is equivalent to N1Z = DZ + A;Z. Using the spectral decomposition and the
symbols introduced in the proof of Theorem 3, we find that the characteristic equation of the restriction
of N7 to Y7 has x = rV} — pus as eigenvalue. Since RI{V = % > 1, we have £ > 0. We conclude that
Ej is unstable if RY > 1. [
Theorem 5. Assume that (H) is satisfied for Fy. Then the infection steady state with humoral
immunity Ej is globally asymptotically stable if R} > 1.

Proof. Consider the Lyapunov function define by:

£2 /]:2 l’t

where E = (S,L,I,V,W) is a solution of (1)—(2) and

S L ,u2+(5+p <I> ,8152V2 (V)
F Sy Lo ) r2totr, g val Y
2(E) = 5 <52>+ 2 <L2>+ 5 2\L) T o0 ramn 2\

pB1S52V2 W2@<W>+P(5—52+L—L2)2
rk(1 —e)(1+ qW2)l2 Wa 282 (p1 + p2 + p13)

By using the equalities ¢ = 1S9 + f_il_qsfv‘% + ﬁfiﬂ% —pLy = 182 + (p2 + 8)L2, 6Ly = p3la,

k(1 —e)lo = paVa + pVoWs and rVa = ps, we obtain

dLo / { 1 ( ppaS ) 2 —p(u2 +6)
2 [ (S —pLo+ —212 L) (5= 8y)% +
dt o L Ss \M T e s ( 2) (M1+M2+M3)52(

_ L)2
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B1S2Va ILL Sa Vol SLoV (14 g1 W) 1+q@W
- B o(2r) +2(3) +olaw) +e (Smnsam) o (e
B152V5 (_ 1_ \%4 V(1+Q1W2) 1—{—Q1W>
1+ qaWs Va Vz(1+Q1W) 1+ @ Ws
_ B2Sely [(@(bL) < ) <SL21 1~|—Q2W2)> +(I)<1+Q2W>]
1+ QQWQ Lol SQLIQ 1+ Q2W) 1+ q2W2
B2S215 < I I(1 4 g W) 1+QQW>}
—-1—-——=+ dx

22 +
14+ gWs L L(l+@W) 1+q¢W

From (11) and the condition p1Se — pLy > 0, we deduce that dﬁz < 0 with equality if and only if
S=8y, L=Ly, I =15,V =Vyand W = Ws. Thus, Es is globally asymptotically stable. ]

4. Numerical simulation

In order to illustrate the results presented earlier, we perform numerical simulations using the param-
eters specified and referenced in [9]. These parameters are given as follows

o =060, d;=0.001, dy=0.001, ds=0.001, d4=0.001, ds=0.001, p3 =0.001,
=02, pe=0.09, 06=15 pu3=0.75, p=0.>5, pus=15us=0.73,
Bo=12x10"% ¢ =001, ¢2=0.02 p=001, k=50,
and the values of r and 1 are adjusted to obtain the three cases of global stability identified earlier.

When r = 2.4 x 1073 and $; = 4.6 x 1076 we achieve Ro = 0.9209 < 1 and Ey = (60000, 0,0, 0,0).
Figure 1 illustrates that Ej is globally asymptotically stable. In the case where r = 2.4 x 1072 and
B1 = 1.3 x 1075, we obtain Ry = 2.6009 > 1, RI = 0.9910 < 1 and E; = (23069, 23,46,124,0).
Figure 2 demonstrates the global asymptotic stability of Ey. For r = 4 x 1073 and 3; = 1.3 x 107,
we obtain R}V = 1.6517 > 1 and E» = (3.1263 x 107, 18.0990, 36.2015, 75.0259, 8.6286). Figure 3 also

confirms the global asymptotic stability of Fy. These numerical simulations align seamlessly with the
assertions in Theorems 3, 4 and 5.

Time, t 0 o Space, x Time, t [ Space, x

Fig.1. Behaviour of model (1) when Ry = 0.9209 < 1.
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5. Conclusion

In this work, we have studied the spatiotemporal dynamics of RNA viruses in the presence of humoral
immunity and antiviral treatment, with a focus on the case of SARS-CoV-2. We have proposed a
mathematical model based on partial differential equations with reaction-diffusion. This model ac-
counts for both cellular and viral modes of transmission and incorporates both lytic and non-lytic
responses of humoral immunity, as well as the effects of antiviral treatment. Additionally, it includes a
non-cytolytic healing process. We have demonstrated that the proposed model is well-posed. Specif-
ically, we have established that under realistic conditions, the system possesses unique, positive, and
bounded solutions. We have provided threshold parameters, the basic reproduction number R and
the reproduction number of humoral immunity R}’V We have established the existence and uniqueness
of three equilibrium points: a disease-free equilibrium Ej, a second equilibrium F; when Ry > 1, and
a third equilibrium E3 when RY’ > 1. We studied the global stability of these three equilibria, showing
that Fy is globally stable if Ry < 1 and unstable if Rg > 1, while E; is globally asymptotically stable
if RIV < 1, and F; is globally asymptotically stable if RV > 1.
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NMpocTopoBo-yacoBa guHamika PHK-BipyciB 3a HasiBHOCTI iMmyHiTeTy

Ta nikyBaHHA: Bunagok SARS-CoV-2

Eab Kapimi M. 112, Xarrap K.13, FOchi H.!

L Ta6opamopia ananizy, modesosania ma cumyaosania (LAMS),
Daxyavmem nayx Ben M’Cix, Ynisepcumem Xacana II Kacabaarxu, n.c. 7955,
Cidi Ocman, Kacabaanka, Mapoxko
2 Pezionanvnuti yenmp oceimu i nideomosxu npogeciti (CRMEF),

10000 npocn. Aarsnv Aav @acci, Pabam, Mapoxko
3 Hayxosa 2pyna 3 modemosarns ma euxaadanns mamemamuru (ERMEM),

Pezionaavrut yenmp ocsimu i nidzomosxu npogecitt (CRMEF), 20340 Tep6 Taned, Kacabranka, Mapokko

Y crarTi po3pobaIETHCA MaTeMAaTUIHA MOJIEIb, BUKOPUCTOBYIOUN I epeHIiaibHi piB-
HAHHS B YACTUHHUX TOXiIHUX, 100 mociautu noseminky PHK-Bipycis 3a nasBrOCTI 11pO-
TUBIPYCHOrO JiKyBaHHs. P0o3pobJieHa MOJE/b BKIIIOYAE CIIOCOOM mepeiadi K Bill KIiTuHA
0 KaiTuHU, Tak 1 Bix Bipycy mo kmituau. CHOYATKy BCTAHOBJIEHO KOPEKTHICTH MOJEI,
MMOKA3YI0YH ICHYBAHHSA Ta €IUHICTH PIllleHb, a TAKOXK IX JOJATHICTH Ta oOMexKeHiCcTh. Kpim
TOTO, ieHTrdIKOBAHO Ta MPOAHAJII30BAaHO CTiliKi piBHOBaXKHI cTaHu, X TJIOOAJIBHY CTiil-
KiCTb 3aJI€2KHO BiJl KOHKPETHUX MOPOTOBUX IMapaMeTpiB 3a Jonomoroio Gpyukiiiit JIsmynosa.
106 migTBepaAUTH TEOPETUYHI BUCHOBKY, HABEIEHO LIFOCTPAIIl 32 JOITOMOTOI0 YUCEIHHOTO
MOJIC/TIOBAHHSI.

Kntouosi cnosa: peakyisa—odupysis; PHK-eipycu; cnocobu nepedasi; mamemamuime mo-
demosarna; ananisa cmitixocms.
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