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In the current paper, the problem of interpolation of scattered data on two-dimensional
surfaces is considered by proposing an extension to the Shepard method and its modified
version to surfaces. Each proposed operator is a linear combination of basis functions
whose coefficients are the values of the function or its Taylor of first-order expansions at
the interpolation points using both functional and derivative data. Numerical tests are
given to show the interpolation performance, where several numerical results show a good
approximation accuracy of the proposed operator.
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1. Introduction

Since ancient times, there has been a great deal of research on the topic of scattered data approximation
using finite measurements of the function [1]. This problem arises in a variety of fields where the data
typically represent some physical phenomena, such as temperature, rainfall, or elevation, observed at
various points on a surface. It is often impractical to obtain data at all of the points at which values
are desired, thus necessitating an approximation technique such as interpolation.

When the data are confined to a plane region, the problem becomes that of bivariate interpolation
for arbitrarily distributed points in the plane. Here, this case was treated in different ways by several
authors. D. Shepard introduced a solution to this problem in the late 60s, in the famous paper [2]. After
that, many studies have investigated how to enhance the reproduction quality of the Shepard operator
utilizing different forms of weight functions to overcome the disadvantages of the original Shepard
method [3, 4]. On the other hand, to maintain the advantages of the original Shepard method, many
studies are carried out to increase the reproduction quality of the Shepard operator in the presence of
different types of functional and derivative data [5–7]. As solutions to these problems, or even more
complex ones, many methods are proposed, such as splines, supersplines, radial basis functions, and
Shepard-like methods. The Shepard interpolation method has proven its efficiency and reliability in
several works and has applications for the prediction of dynamical and equilibrium properties of the
Born–Oppenheimer potential energy surface of a molecular system [8] and in the use of an inverse
problem of residual fields [9].

On the other hand, when the data are distributed on a surface (sphere, cylinder, cone, or any general
surface), many methods are proposed in the literature. With regard to the spherical interpolation
problem, many methods have been proposed to solve the spherical interpolation problem for scattered
data. In fact, it would take extensive effort to compile a list of the various methods which have been
proposed for this problem. Some of these methods include spherical harmonics, spherical analogues of
thin plate splines, tensor splines, and radial basis functions [10–18] among others. Many studies have
also considered the approximation problem in the general case of Riemannian manifolds (see [19–22]).
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The purpose of this paper is to generalize the results for Shepard-like interpolation. Here, we
consider an extended version of the Shepard methods in 2-dimensional surfaces in R

3. In fact, we
preserve all the advantages of the Shepherd method, in which the interpolant is directly expressed as a
linear combination of basis functions, which depend on the geodesic distance. Also, the basis functions
have many important properties, such as its derivative equal to zero at the interpolation points. We
refer to the fact that we rely on two types of basis function, the first one is the point basis function,
the coefficients of the linear combination in this case are values of the unknown function. As for the
second type of basis functions which are the triangular basis functions, the coefficients of the linear
combination, in this case, are local interpolants over triangles. The results proven in this paper can
be used in several fields, especially when modeling concrete surfaces such as maritime traffic, GPS
satellites, and any problem that requires good precision interpolation of 3D positions [23].

This paper is organized as follows. In Section 2, we present the interpolation problem on general
surfaces in R

3 and introduce the interpolant, which is based on a suitable class of cardinal basis
functions that depend only on geodesic distances. In Section 3, we give the basis function based on the
triangulation, and we present two local interpolants over each triangle. By using the linear combination
of triangular basis functions and local interpolants, we present two operators. In Section 4, we discuss
numerical tests on some surfaces which are the most interesting and handy cases, such as a sphere,
cone, and cylinder, but the adopted point of view is more general. The consideration of these surfaces
in the numerical test relies on the availability of the explicit expression of the geodesic distance.

2. Shepard basis functions on general surface

In this paper, we note by M a surface in R
3 defined by M = {(x, y, z) ∈ R

3; z = F (x, y)}, Ω =
{u = (u1, u2, u3) ∈ R

3} ⊂ M is an open geodesically convex, and ϕ : Ω → R
2 is a function that

maps Ω homeomorphically to the open set Λ = {x = (x1, x2) ∈ R
2}. Given a set of distinct points

X = {u1, . . . ,un}, arbitrarily distributed on Ω, with associated data fi sampled from some unknown
function f : Ω → R, such that fi = f(ui), i = 1, . . . , n.

For any ui ∈ Ω, i = 1, . . . , n, there exists only one xi ∈ Λ such that ϕ(ui) = xi, and we consider
the following notations:

∇xf :=

(
∂f

∂x1
,
∂f

∂x2

)
and Du−ui

f(ui) := (x− xi) · ∇xf,

where “ ·” denotes the scalar product in R
2. To construct the basis function, we need to define the

geodesic distance between two points on M [24]. For this reason, let be A and B two points on M
and γ : [0, 1] → M a C1 curve between A and B, that is γ(0) = A and γ(1) = B, the γ length given
as

L[A,B, γ] =

∫ 1

0
‖γ′(t)‖

R3dt.

Supposing ϕ(Ω) be compact in R
2, the geodesic distance between A ∈ Ω and B ∈ Ω denoted by

dg(A,B) is the length of the shortest of all curves connecting A and B. By C(Ω), we denote the class
of all real-valued continuous functions on Ω. We note ∆ the projection of the region D ⊂ M on the
plane xoy, the surface area of D is [25]

area(D) :=

∫

∆

√
1 + F ′2

x + F ′2
y dx dy,

where

F ′
x =

∂F

∂x
and F ′

y =
∂F

∂y
.

In order to build a function Sµ[f ] defined on Ω which interpolates the data, namely,

Sµ[f ](ui) = fi, i = 1, . . . , n,

we can consider, in line with classical Shepard operator in the Euclidean space [5], an interpolant
defend on Ω by the form
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Sµ[f ](u) =

n∑

i=1

Aµ,i(u)fi, u ∈ Ω. (1)

This interpolant uses point-based basis functions

Aµ,i(u) =
(dg(u,ui))

−µ

n∑

k=1

(dg(u,uk))
−µ

, i = 1, . . . , n, (2)

where dg denotes the geodesic metric on M and µ is a real positive parameter control.
The functions Aµ,i(u) are cardinal basis functions; they satisfy for all u ∈ M and i, j = 1, . . . , n,

the conditions

Aµ,i(u) > 0,
n∑

i=1

Aµ,i(u) = 1, Aµ,i(uj) = δij ,

where δij is the Kronecker delta.
By construction of the basis functions Aµ,i(u), we can easily verify the previous properties. Also,

the interpolation properties are satisfied by the interpolant Sµ[f ]; (i.e.) for all i = 1, . . . , n, we have

Sµ[f ](ui) = f(ui).

To give more significant error estimates, let us consider Br(w) := {u ∈ M; dg(w,u) 6 r} for any
w ∈ M. Since for any u ∈ Ω there exists ru > 0 such that Bru(u) contains at least one element of
X, let be h = inf{ru;u ∈ Ω}. Under these assumptions, for any u ∈ Ω, Bh(u) contains at least one
element of X. Let us consider M = sup

w∈M

{Bh(w) ∩X}. By construction of h, we have M > 0.

Proposition 1. Suppose that f is continuous in Ω. Then for any µ > 4, we have

|Sµ[f ](u)− f(u)| < ωC h,

where ω is the f modulus continuity and C = M +C ′ (C ′ = lim
∑N

k=2
(2k−1)2

(2k−3)µ−1 ).

Proof. For fixed u ∈ Ω, u 6= ui (i = 1, . . . , n). Since Ω is compact, there exists a smaller non-zero
integer N such that Ω ⊂ B(2N−1)h(u). Now we will group the elements of X in such a way:

• G1(u) = {ui ∈ X; dg(u,ui) 6 h},
• Gk(u) = {ui ∈ X; (2k − 3)h < dg(u,ui) 6 (2k − 1)h}, for k = 2, . . . , N .

Each subset Gk(u) contains at most
[
A(Gk(u))
A(G1(u))

]
elements of X, where [.] and A

(
Gk(u)

)
denote, re-

spectively, the floor function and area. Therefore, Gk(u) contains at most (2k − 1)2M elements of X.
Now, according the continuities of f , for any ui ∈ X, we have

|f(u)− f(ui)| 6 ω dg(u,ui), (3)

|Sµ[f ](u)− f(u)| =
∣∣∣∣

n∑

i=1

Aµ,i(u)fi − f(u)

∣∣∣∣ =
∣∣∣∣

n∑

i=1

Aµ,i(u)(fi − f(u))

∣∣∣∣

6

n∑

i=1

Aµ,i(u)|f(ui)− f(u)|

6
∑

ui∈G1

Aµ,i(u)|f(ui)− f(u)|+
N∑

k=2

∑

ui∈Gk

Aµ,i(u)|f(ui)− f(u)|. (4)

According the basis functions properties, the fact that dg(u,ui) 6 h for any ui ∈ G1(u), and the
inequality (3), the first term is bounded as

∑

ui∈G1

Aµ,i(u)|f(ui)− f(u)| 6 Mωh. (5)

Concerning the second term, we have

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 277–289 (2024)



280 Zerroudi B., Tayeq H., El Harrak A.

N∑

k=2

∑

ui∈Gk

Aµ,i(u)|f(ui)− f(u)| 6 ω

N∑

k=2

∑

ui∈Gk

Aµ,i(u) dg(u,ui)

6 ω

N∑

k=2

∑

ui∈Gk

(dg(u,ui))
−µ+1

n∑

k=1

(dg(u,uk))
−µ

6 ω

N∑

k=2

∑

ui∈Gk

(dg(u,ui))
−µ+1

∑

ui∈G1

(dg(u,ui))
−µ

,

we know that for any uk ∈ G1, we have dg(u,uk) 6 h, which give
1∑

ui∈G1

(dg(u,ui))
−µ

6
hµ

M
,

on the other hand, for any ui ∈ Gk, k = 2, . . . , N , we have (2k − 3)h < dg(u,ui) 6 (2k − 1)h. Under
the condition µ > 1, we obtain

((2k − 1)h)−µ+1 6 (dg(u,ui))
−µ+1 < ((2k − 3)h)−µ+1,

then, by applying the sum, we find

(2k − 1)2M((2k − 1)h)−µ+1 6
∑

ui∈Gk

(dg(u,ui))
−µ+1 < (2k − 1)2M((2k − 3)h)−µ+1,

as a result

M

N∑

k=2

(2k − 1)2((2k − 1)h)−µ+1
6

N∑

k=2

∑

ui∈Gk

(dg(u,ui))
−µ+1 < M

N∑

k=2

(2k − 1)2((2k − 3)h)−µ+1.

Thus, we find the bond
N∑

k=2

∑

ui∈Gk

Aµ,i(u)|f(ui)− f(u)| 6 ω h

N∑

k=2

(2k − 1)2(2k − 3)−µ+1. (6)

By substituting (5) and (6) in (4), we obtain

|Sµ[f ](u)− f(u)| 6 ω h (M +

N∑

k=2

(2k − 1)2(2k − 3)−µ+1).

If either µ > 4, the sum SN =
∑N

k=2(2k−1)2(2k−3)−µ+1 converges (bounded by C ′ ∈ R
+). Moreover,

we have
∣∣Sµ[f ](u)− f(u)

∣∣ 6 ω h (M + C ′). �

Remark 1. If all the points ui are in G1, we will have |Sµ[f ](u)− f(u)| 6 M ωh.

3. Surface–triangle–based basis functions

To extend the point-based basis functions in (2) to Surface-triangle-based basis functions, let us consider
a surface triangulation T = {t1, . . . , tm} of the nodes X. That is, each tj = [uj1 ,uj2 ,uj3 ] is a surface
triangle with vertices in X and each node ui is the vertex of at least one surface triangle, hence

∪j{j1, j2, j3} = {1, 2, . . . , n}.
We note that the set of surface triangulations T can be the Delaunay triangulation of X, or it can be
a general surface triangulation with overlapping or disjoint surface triangles (Figure 1).

The basis functions corresponding to the surface triangulation T are then defined by

Φµ,j(u) =

3∏

ℓ=1

1

(dg(u,ujℓ))
µ

m∑

k=1

3∏

ℓ=1

1

(dg(u,ukℓ))
µ

=

∏

k 6=j

3∏

ℓ=1

(dg(u,ukℓ))
µ

m∑

k=1

∏

i 6=k

3∏

ℓ=1

(dg(u,uiℓ))
µ

, j = 1, . . . ,m. (7)
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a b

Fig. 1. Set of points on a surface: 400 points (a), Delaunay triangulation (786 surface triangles) (b).

Note that

Φµ,j(ui) = δij , Φµ,j(u) > 0,

n∑

j=1

Φµ,j(u) = 1.

For any tj ∈ T , we consider the local basis functions corresponding to tj given as

wj,j1 =
S(u,uj2 ,uj3)

S(uj1 ,uj2 ,uj3)
, wj,j2 =

S(uj1 ,u,uj3)

S(uj1 ,uj2 ,uj3)
, wj,j3 =

S(uj1 ,uj2 ,u)

S(uj1 ,uj2 ,uj3)
,

where S(u,v,w) denotes the signed area of the surface triangle [u,v,w].
We can verify very easy that the basis functions wj,jℓ(u), ℓ = 1, 2, 3, satisfy the following conditions

wj,jℓ(uj,jk) = δkℓ, k, ℓ = 1, 2, 3; (8)

3∑

ℓ=1

wj,jℓ(u) = 1 ∀u ∈ M, (9)

for all j ∈ {1, . . . ,m}.
Now, let us define over tj the following operator

Hj[f ](u) =

3∑

ℓ=1

wj,jℓ(u)fjℓ , (10)

locally interpolate the given data at the vertices of each of the triangles.

Proposition 2. For any f ∈ C(Ω) and for any u ∈ tj, j = 1, . . . ,m, we have the following bound
for the remainder term

|f(u)−Hj[f ](u)| 6 ω dg(u,ujm),

with dg(u,ujm) = max{dg(u,ujℓ); ℓ = 1, 2, 3}.
Proof. For any j = 1, . . . ,m and any u ∈ tj, by using (10), we have

f(u)−Hj[f ](u) =

3∑

ℓ=1

wj,jℓ(u)f(u)−
3∑

ℓ=1

wj,jℓ(u)fjℓ

=

3∑

ℓ=1

wj,jℓ(u) (f(u)− fjℓ) ,

by the triangle inequality and the fact that 0 6 wj,jℓ(u), ℓ = 1, 2, 3, then

|f(u)−Hj[f ](u)| 6
3∑

ℓ=1

wj,jℓ(u)|f(u)− fjℓ|. (11)

According to the continuity of f , for any ℓ = 1, 2, 3, we gain

|f(u)− fjℓ| 6 ω‖u− ujℓ‖R3 6 ω dg(u,ujℓ), (12)

by substituting (12) in (11), we find
∣∣f(u)−Hj[f ](u)

∣∣ 6 ω

3∑

ℓ=1

wj,jℓ(u) dg(u,ujℓ),

then, by using (9), we obtain the Proposition 2. �
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In the presence of additional the first-order derivatives data, we can enhance the approximation
order of Hj[f ]. If in (10) we replace fjℓ by the Taylor polynomial of the first degree at ujℓ

T1[f,ujℓ](u) = fjℓ +Du−ujℓ
f(ujℓ). (13)

In fact, the result operator

H̃j[f ](u) =

3∑

ℓ=1

wj,jℓ(u)T1[f,ujℓ ](u). (14)

Proposition 3. Let f ∈ C2(Ω). Then, for each u ∈ tj , we have
∣∣∣f(u)− H̃j[f ](u)

∣∣∣ 6
|D2f |Ω

2
d2g(u,ujm).

Proof. From the equation (14), we easily obtain

∣∣∣f(u)− H̃j [f ](u)
∣∣∣ 6

3∑

ℓ=1

|wj,jℓ(u)|
∣∣T1[f,ujℓ](u)− f(u)

∣∣, (15)

due to the fact that the remainder term between f(u) and T1[f,uj1 ](u) is bounded as

∣∣T1[f,ujℓ](u) − f(u)
∣∣ 6 |D2f |Ω

2
dg(u,ujℓ)

2. (16)

Finally, by substituting (16) in (15), we obtain the result of Proposition 3. �

By combining the surface-triangle-based basis functions (7) with the operators Hj[f ](u) (10) and

with the interpolant H̃j[f ] (14), and for any µ > 0 the result surface-Shepard operators are defined as

Kµ[f ](u) =
m∑

j=1

Φµ,j(u)Hj [f ](u), K̃µ[f ](u) =
m∑

j=1

Φµ,j(u) H̃j [f ](u). (17)

The operators (17) interpolate the function data at each ui, i = 1, . . . , n; this is due to the basis
functions property and interpolate properties of local interpolants.

4. Numerical results

In the experiments, in order to check the accuracy of the proposed operators Sµ, Kµ, and K̃µ, we
present numerical results for the operators using scattered data on 2-dimensional surfaces. Indeed,
this investigation gives a numerical validation of the theoretical results of three operators applied to
the surfaces; sphere, cylinder, cone, and a general surface defined by z = F (x, y).

We carried out our various numerical experiments with n Halton scattered data points denoted
by X. Data values are taken by the restriction on M of six test functions, generally used in the
literature to test and validate new methods and algorithms, were introduced in [26] and by various
authors [4, 6, 27–29]. Six functions are given by:

• Exponential:

f1(x, y, z) = 0.75 exp

(
−(9x− 2)2 + (9y − 2)2 + (9z − 2)2

4

)

+ 0.50 exp

(
−(9x− 7)2 + (9y − 3)2 + (9z − 7)2

4

)

+ 0.75 exp

(
−(9x+ 1)2

49
− (9y + 1)2

10
− (9z + 1)2

10

)

− 0.20 exp
(
−(9x− 1)2 − (9y − 7)2 − (9z − 7)2

)
;

• Ccliff:

f2(x, y, z) =
tanh(9z − 9y − 9x) + 1

9
;
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• Saddle:

f3(x, y, z) =
(1.25 + cos(5.4y)) cos(6z)

(6 + 6(3x − 1)2)
;

• Steep:

f4(x, y, z) =
exp((−81

4 )((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2))

3
;

• Sphere:

f5(x, y, z) =

√
64 − 81((x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

9
− 0.5;

• Gentle:

f6(x, y, z) =
exp(−81

16((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2))

3
.

Furthermore, we validate the approximation order of the operators Kµ and K̃µ, using five sets of
quasi-uniformly distributed points, to generate two types of triangulations, namely Delaunay triangu-
lation and Compact one. Finally, to investigate accuracy of the operators Sµ, Kµ and K̃µ, we compute
the maximum absolute error emax, the average error emean, and the mean square error eMS given by

emax = max
16i6ne

ei, emean =
1

ne

ne∑

i=1

ei, eMS =

√∑ne

i=1 ei
2

ne
, (18)

where ei are the pointwise errors computed in absolute value at ne evaluation points.
For each f of six test functions, we construct Sµ[f ], Kµ[f ], K̃µ[f ] and calculate ei at the points of

a quasi-regular grid and evaluate the errors; maximum, average and mean square (18).

4.1. Numerical results on the sphere

In this subsection, we carried out our numerical experimental in the sphere case, where we consider
S2 the unite sphere, in this case, the geodesic distance dg and the area of the spherical triangle are
defined on S2 [30] as

dg(u,v) = cos−1(utv), u,v ∈ S2. (19)

Now, we carried out an experiment to show the approximation accuracies of the three operators S2, K2

and K̃2, where we apply those operators to 6 test functions using 1119 Halton points (see Figure 2a).
Regarding K2 and K̃2, we consider two types of triangulation, Delaunay triangulation and Compact
one for each operator (see Figure 2).

a b c

Fig. 2. Set of points on the sphere: 1119 points (a), Delaunay triangulation (2226 triangles) (b), and Compact
triangulation (604 triangles) (c).

Table 1 contains the maximum error, mean average error, and square error (18). The errors∣∣S2[fi](u) − fi(u)
∣∣,
∣∣K2[fi](u) − fi(u)

∣∣ and
∣∣K̃2[fi](u) − fi(u)

∣∣ for i = 1, . . . , 6; are evaluated at
ne = 184576 points.

The obtained numerical results prove that the operators S2, K2 and K̃2 have a signified accuracy
specifically K2 and K̃2 which are better than S2.
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Table 1. Comparison between the operators S2, K2 and K̃2 applied
to the 6 test functions, using the set of 1119 Halton points.

S2[f ] K2[f ] K2[f ] K̃2[f ] K̃2[f ]
Delaunay Compact Delaunay Compact

emax 1.2733e-01 9.4037e-03 3.1171e-02 3.7636e-03 1.0927e-02
f1 emean 9.7387e-03 3.0412e-04 7.0772e-04 7.1179e-05 1.8550e-04

eMS 1.7060e-02 7.7245e-04 1.9626e-03 2.1969e-04 6.1227e-04
emax 9.8447e-02 1.3097e-02 2.8714e-02 7.1515e-03 2.0903e-02

f2 emean 1.1497e-02 2.6833e-04 6.2748e-04 1.1022e-04 2.4979e-04
eMS 1.7675e-02 8.9528e-04 2.0609e-03 3.9405e-04 9.4890e-04
emax 1.2479e-01 1.2628e-02 2.7175e-02 3.1466e-03 7.5431e-03

f3 emean 1.4812e-02 3.5768e-04 8.2982e-04 5.9434e-05 1.4358e-04
eMS 2.2723e-02 7.7162e-04 1.7613e-03 1.6234e-04 3.6566e-04
emax 9.0704e-02 3.3433e-03 1.6352e-02 1.9136e-03 4.6729e-03

f4 emean 9.3213e-03 1.4731e-04 3.7152e-04 3.8297e-05 1.0667e-04
eMS 1.4659e-02 3.2256e-04 8.6497e-04 1.0892e-04 2.9629e-04
emax 2.9804e-01 2.2329e-02 4.1421e-02 7.6448e-03 1.6230e-02

f5 emean 1.9561e-02 3.0024e-04 8.0258e-04 5.2200e-05 1.2869e-04
eMS 2.8668e-02 6.4804e-04 1.5460e-03 1.3410e-04 3.1900e-04
emax 6.7440e-02 2.3250e-03 8.1282e-03 6.5419e-04 1.7866e-03

f6 emean 1.5168e-02 1.6535e-04 3.7932e-04 2.6179e-05 7.6321e-05
eMS 1.9008e-02 2.8684e-04 6.6235e-04 4.9733e-05 1.4211e-04

4.2. Numerical results on the cylinder

Moving from the considerations on the sphere to those on the cylinder, nothing changes for what
concerns the structure of the interpolants and of the cardinal basis functions to be used. In fact, what
changes dramatically is the formula of the geodesic distance between two points. Let Cy be a subset
of a right circular cylinder with radius 1 and height 1 defined by

Cy =
{
(x, y, z) ∈ [0, 1]3 : x2 + y2 = 1

}
.

a b c

Fig. 3. Set of points on the cylinder: 1101 points (a), Delaunay triangulation (2179 triangles) (b), and Compact
triangulation (614 triangles) (c).

The existence of an isometric mapping between Cy and a rectangle in Euclidean plane geometry
allows us to define the geodesic distance and the geodesic triangle area on Cy based on those of the
rectangle in the Euclidean framework.

Let A = (xA, yA, zA), B = (xB , yB, zB) and C = (xc, yc, zc) be three points in Cy.
• The geodesic distance on Cy between A and B is defined as

dg(A,B) =
√

(zB − zA)2 + arccos2 (xAxB + yAyB).

• The signed area of the geodesic triangle ABC on Cy is

Ag(A,B,C) =
1

2

(
arcsin(xAyB − xByA)(zC − zA)− arcsin(xAyC − xCyA)(zB − zA)

)
.
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In Figure 3, we present the set of points used to generate Delaunay and Compact triangulations on
the manifold Cy.

We tested the approximation accuracy of the operators S4, K4 and K̃4 applied to 6 test functions
using Delaunay and Compact triangulations generated by 1101 Halton points on the manifold Cy.
Then, we find the same results as in the case of the sphere. Table 2 resumes the obtained results.

Table 2. Comparison between the operators S4, K4 and K̃4 applied
to 6 test functions, using the set of 1101 Halton points.

S4[f ] K4[f ] K4[f ] K̃4[f ] K̃4[f ]
Delaunay Compact Delaunay Compact

emax 4.0297e-02 6.3803e-03 1.9926e-02 1.8941e-03 5.3070e-03
f1 emean 1.8091e-03 2.3269e-04 5.0549e-04 3.5783e-05 7.7244e-05

eMS 4.0426e-03 5.5611e-04 1.2880e-03 1.0620e-04 2.4191e-04
emax 6.1322e-02 2.8341e-02 2.9409e-02 3.3402e-03 6.9304e-03

f2 emean 1.5840e-04 5.5099e-05 7.9130e-05 1.0499e-05 1.5667e-05
eMS 1.3346e-03 5.8432e-04 6.4444e-04 1.0892e-04 1.5187e-04
emax 6.3083e-02 1.0940e-02 1.8739e-02 1.0286e-03 5.5781e-03

f3 emean 3.9710e-03 4.3214e-04 9.7999e-04 3.4033e-05 9.2857e-05
eMS 6.3955e-03 7.8662e-04 1.7713e-03 6.9288e-05 2.2618e-04
emax 5.6972e-03 1.1551e-03 2.0926e-03 3.8432e-04 1.5497e-03

f4 emean 3.7961e-04 5.1203e-05 1.1049e-04 7.2538e-06 2.0268e-05
eMS 7.5035e-04 1.0995e-04 2.2690e-04 2.0996e-05 6.6583e-05
emax 1.3834e-01 4.2462e-02 4.5539e-02 1.6355e-02 1.7347e-02

f5 emean 5.2997e-03 3.8642e-04 7.8819e-04 8.8254e-05 1.1585e-04
eMS 8.7938e-03 1.0776e-03 1.5680e-03 3.7107e-04 3.7603e-04
emax 1.9031e-02 1.4767e-03 5.2129e-03 7.0725e-04 8.1121e-04

f6 emean 2.0968e-03 1.3778e-04 2.8894e-04 2.4456e-05 4.6163e-05
eMS 2.7998e-03 2.1103e-04 4.6680e-04 4.6232e-05 7.6732e-05

4.3. Numerical results on the cone

Let Co be a subset of a right circular cone with radius 1 and height 1 defined by

Co =
{
(x, y, z) ∈ [0, 1]3 : x2 + y2 = z2

}
.

It is so clear that there is an isometric mapping between Co and a flat disk sector with radius
√
2

and central angle π
√
2/4 in the geometry of the Euclidean plane. According to this isometry, we define

both the geodesic distance and the geodesic triangle area on Co with the help of the Euclidean ones on
the disk sector.

Let A = (xA, yA, zA), B = (xB , yB, zB) and C = (xc, yc, zc) be three points in Co.
• The geodesic distance on Cy between A and B is defined as

dg(A,B) =
√
2

√√√√z2A + z2B − 2zAzB cos

(√
2

2
β(A,B)

)
,

where

β(A,B) =





arccos
xAxB + yAyB√

x2A + y2A

√
x2B + y2B

if
√

x2A + y2A

√
x2B + y2B > 0,

0 if
√

x2A + y2A

√
x2B + y2B = 0.

• The signed area of the geodesic triangle ABC on Co is

Ag(A,B,C) = zBzC sin

(√
2

2
γ(B,C)

)
+ zAzB sin

(√
2

2
γ(A,B)

)
+ zAzC sin

(√
2

2
γ(C,A)

)
,
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where

γ(A,B) =





arcsin
xAyB − xByA√

x2A + y2A

√
x2B + y2B

if
√

x2A + y2A

√
x2B + y2B > 0,

0 if
√

x2A + y2A

√
x2B + y2B = 0.

Here, we perform our numerical experiments with 1105 points on the surface Co (see Figure 4),
and we test the operators S2, K2 and K̃2 applied to 6 test functions using Delaunay and Compact
triangulations. Table 3 shows the approximation accuracy results.

a b c

Fig. 4. Set of points on the cone: 1105 points (a), Delaunay triangulation (2192 triangles) (b), and Compact
triangulation (614 triangles) (c).

Table 3. Comparison between the operators S2, K2 and K̃2 applied
to the 6 test functions, using the set of 1105 Halton points.

S2[f ] K2[f ] K2[f ] K̃2[f ] K̃2[f ]
Delaunay Compact Delaunay Compact

emax 1.6727e-01 1.5286e-02 3.2557e-02 1.6854e-02 5.9845e-02
f1 emean 4.0405e-02 8.5168e-04 2.1688e-03 2.9055e-04 7.0954e-04

eMS 4.8415e-02 1.5900e-03 3.8147e-03 1.0004e-03 2.7193e-03
emax 7.1859e-02 1.1448e-02 1.2223e-02 5.5784e-03 4.1594e-03

f2 emean 7.1650e-03 2.3672e-04 5.2821e-04 5.6826e-05 1.0364e-04
eMS 1.0582e-02 6.1519e-04 1.1647e-03 1.7913e-04 2.8276e-04
emax 1.6243e-01 5.6826e-03 9.4809e-03 2.0364e-03 3.0962e-03

f3 emean 1.7309e-02 2.7380e-04 6.8687e-04 6.6305e-05 1.4186e-04
eMS 2.6831e-02 4.9643e-04 1.1919e-03 1.4964e-04 2.9348e-04
emax 8.8312e-02 5.9272e-03 1.4304e-02 1.3539e-03 3.3301e-03

f4 emean 1.0221e-02 1.9145e-04 5.0902e-04 3.7534e-05 9.9155e-05
eMS 1.5504e-02 4.1992e-04 1.1572e-03 9.6550e-05 2.5133e-04
emax 3.8225e-01 4.6490e-02 4.3121e-02 1.8835e-02 1.7079e-02

f5 emean 2.1273e-02 3.5805e-04 1.0191e-03 5.3950e-05 7.1797e-05
eMS 3.4399e-02 8.8836e-04 2.2863e-03 2.7585e-04 2.9722e-04
emax 7.2985e-02 3.9272e-03 9.9883e-03 6.7673e-04 1.5594e-03

f6 emean 1.6673e-02 1.8548e-04 4.5685e-04 2.5592e-05 5.9266e-05
eMS 2.1728e-02 3.3460e-04 8.5508e-04 5.0115e-05 1.2183e-04

4.4. Numerical results on surfaces defined by z = F (x, y)

Consider a surface M given by

M = {(x, y, F (x, y)); (x, y) ∈ [0, 1]2}.
We assume that F ∈ C1([0, 1]2). To test the performance of our interpolation method, we need to
compute the geodesic distance on general surfaces. Unfortunately, finding a geodesic distance is another
critical point.
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A curve γ : [0, 1] → [0, 1]2 gives a curve F ◦ γ : [0, 1] → M on the surface M, its length is given by

L[F ◦ γ] =
∫ 1

0

∥∥(F ◦ γ)′(t)
∥∥
R3dt.

A geodesic on M is a curve F ◦ γ, with γ = (γ1, γ2), which γ satisfy the system of the second order
differential equations, called geodesic equations

γ̈k +
∑

i,j

Γk
ij γ̇iγ̇j = 0, (20)

where Γk
ij are the Christoffel symbols of the second kind (for more detail see [31,32]). The system (20)

can be solved theoretically and uniquely, but there are serious difficulties. To solve equations of
geodesics (20) on a parametric surface, we can use Matlab or Python. To test our interpolants on
surfaces, we focus on M with F (x, y) = cos(2πx) sin(πy). As interpolation nodes, we take some sets of
n uniformly random Halton data points, originally contained in the unit square [0, 1]2 Figure 5. The
test functions to be interpolated are taken from the restriction to M of the trivariate functions already
considered for the sphere, cylinder, and cone. But we report only the numerical results obtained
considering f1 and f2. The interpolation errors computed for the interpolants S2[f ], K2[f ], and K̃2[f ]
are shown in Table 4.

a b

Fig. 5. Set of points on the surface: 500 points (Delaunay triangulation (982 triangles)) (a), 1000 points
(Delaunay triangulation (1980 triangles)) (b).

Table 4. Comparison between the operators S2, K2 and K̃2 applied
to the f1 and f2 test functions, using the set of n = 500, 1000 Halton points.

n S2[f ] K2[f ] K̃2[f ]
Delaunay Delaunay

emax 9.1213e-02 4.2527e-02 2.285e-02
f1 500 emean 7.9868e-03 2.8788e-03 7.2655e-04

eMS 1.4143e-02 5.3807e-03 1.8804e-03
emax 2.0622e-02 2.1234e-02 1.6841e-02

f1 1000 emean 6.4215e-04 6.2321e-04 2.9026e-04
eMS 3.0741e-04 2.1767e-04 1.0132e-04
emax 2.6874e-02 5.4760e-03 4.3641e-03

f2 500 emean 2.0382e-03 8.2657e-04 2.1632e-04
eMS 3.1623e-03 2.1018e-04 4.5934e-04
emax 1.1292e-02 7.4530e-03 2.4576e-03

f2 1000 emean 3.7123e-04 3.6801e-04 6.1532e-05
eMS 1.0113e-03 6.1453e-04 7.875e-05
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5. Conclusion and future works

The results of three numerical tests presented in Section 4 validate the theoretical results developed
in Sections 2 and 3. Indeed, we obtained the desired approximation order of the operators Kµ and

K̃µ using either Delaunay triangulation or Compact triangulation. In this work, the numerical results
present a good approximation accuracy in the local scale using emax and globally according to emean

and eMS as well. Summarising, this paper presents a powerful interpolation method to get accurate
functional approximation with less computational cost. This work will be also very helpful in many
application fields such as the numerical resolution of partial differential equations with new methods.

In future work, we will generalize and develop this study by working in a more general framework
and by presenting new triangulation strategies adapted to this type of interpolation problem. Further-
more, these new interpolation strategies will be a strong point of the Shepard method, which would
be an effective tool in many real applications, especially in space engineering, telecommunications,
meteorology, astronomy, air quality, and air traffic.
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Iнтерполяцiя розсiяних даних на двовимiрнiй поверхнi за
допомогою методу Шепарда
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У цiй статтi розглядається задача iнтерполяцiї розсiяних даних на двовимiрних по-
верхнях шляхом пропозицiї поширення методу Шепарда та його модифiкованої версiї
на поверхнi. Кожен запропонований оператор є лiнiйною комбiнацiєю базисних функ-
цiй, коефiцiєнти яких є значеннями функцiї або її розкладiв Тейлора першого порядку
в точках iнтерполяцiї з використанням як функцiональних, так i похiдних даних. Для
демонстрацiї ефективностi iнтерполяцiї наведено чисельнi тести, де декiлька чисель-
них результатiв показують хорошу точнiсть наближення запропонованого оператора.

Ключовi слова: iнтерполяцiя розсiяних даних; алгоритми iнтерполяцiї; методи

Шепарда; апроксимацiя многовидiв; поверхневий трикутник.
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