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The aim of this study is to lay emphasis on the potential of the use of Game theory to
deal with Blind image Deconvolution. We consider a static game of two players. Player
one controls the image intensity while the player two controls the blur kernel. In this
game each player aims at minimizing his own functional. The outcome of the game is a
pair of strategies: a deblurred image and an estimation of the blur kernel, that minimizes
two functionals. We determine the optimal image deblurring using two particular game
theoretic approaches, recently introduced: the Nash method [Meskine D., Moussaid N.,
Berhich S. Blind image deblurring by game theory. Proceedings of the 2nd International
Conference on Networking, Information Systems & Security (NISS ’19). 31 (2019)] and the
Kalai-Smorodinsky solution method [Nasr N., Moussaid N., Gouasnouane O. The Kalai
Smorodinsky solution for blind deconvolution. Computational and Applied Mathemat-
ics. 41, 222 (2022)] We evaluate the performance of two techniques through numerical
experiments and using some objective quality metrics.

Keywords: deblurring; game theory; multi-objective optimization.
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1. Introduction

Blind deconvolution is a process of retrieving a clean image from its blurry version without any knowl-
edge of the specific blurring process that was applied i.e. the PSF: Point Spread Function. The blurring
can occur due to different factors for instance: out-of-focus blur, motion blur, or atmospheric turbu-
lence.

Blind deconvolution is not a well-posed problem. An ill-posed problem is a problem in which the
solution is sensitive to small changes in the input data. The solution may not exist, or it may not be
unique or stable.

In the blind deconvolution’s case, the input data is the blurred image, and the unknowns are the
sharp image and the blur kernel. The problem is ill-posed because small errors in the observed image or
the estimated PSF can cause large errors in the reconstructed image, and there may be many possible
combinations of the original image and the PSF that could have generated the blurred image.

To conquer the ill posedness of the blind deconvolution problem, additional constraints or assump-
tions need to be introduced to ensure that the solution is unique and stable. These constraints can
take the form of regularization, which involves incorporating new assumptions about the image and the
PSF into the reconstruction process. Regularization techniques such as Tikhonov regularization [1-3],
total variation regularization [4-8|, and sparsity-based regularization [9, 10| have been used in image
blind deconvolution to stabilize the solution and to improve its quality.

Blind deconvolution is far from being a simple problem due to the presence of noise and other
artifacts that may be introduced during the blurring process. To overcome these challenges, different
methods have been proposed, including statistical methods, optimization-based methods, and deep
learning-based methods.

Statistical methods, such as the Maximum A Posteriori (MAP) estimation [11-13] and Expectation
Maximization (EM) algorithm [14,15|, estimate the unknown blurring process and the underlying image
simultaneously. Optimization-based methods, such as the Total Variation (TV) regularization [16,17],
exploit sparsity and smoothness of images to estimate the unknown PSF and the underlying image.

300 (© 2024 Lviv Polytechnic National University



A comparative study of game theory techniques for blind deconvolution 301

Deep learning-based methods have also shown promising results for blind deconvolution of im-
ages [18-21]. These methods typically use a neural network to estimate the unknown blurring kernel
and the underlying image simultaneously.

The corruption process of an image is described as

g=vRu-+mn, (1)

where g represents the damaged image, v is the clean unknown image, u is the point spread function
(PSF) modeling the blurring process, ® is an operator of convolution and 7 is an additive noise.

Blind deconvolution has numerous applications in different fields for instance medical imaging,
astronomy, and surveillance. It can be used to recover high-quality images from blurred or low-
resolution images, which can be valuable for applications such as medical diagnosis, surveillance, and
security.

Deblurring refers to the process of removing or reducing the blurriness or distortion from an image.
When an image is captured or transmitted, it can become blurred due to various factors mentioned
above. Deblurring aims to restore the image to its original sharpness and clarity.

The original image v refers to the clean and undistorted version of the image that we want to
recover. It represents the image as it was intended to be seen without any blurring or degradation.

The blurred corrupted image g is the result of applying blurring or distortion to the original image.
It represents the image that has been affected by factors such as motion or imperfections, resulting in
a loss of sharpness and clarity. This image is often referred to as the degraded or observed image.

The goal of deblurring is to reconstruct or recover the original image v from the blurred corrupted
image g. This involves developing algorithms and techniques that can estimate or reverse the blurring
process to restore the image to its intended quality.

2. Blind deconvolution via Game Theory

2.1. Blind deconvolution via Nash game

Game theory provides a powerful framework for modeling and solving multiobjective optimization
problems, where there are multiple objectives to be optimized simultaneously. Game theory provides
a framework for modeling such situations as games where the players have conflicting objectives, and
the payoff of each player is the corresponding objective function value [22]. The goal is to find a
solution that is optimal for all objectives. The solution concept used in game theory for such problems
is the Nash equilibrium. Following this the authors of [23]| suggested to solve the Blind Deconvolution
problem using a Nash game. They define a static Nash game, of two players: the first is “Deblurring”
and the second is “PSF”, the Deblurring player controls the image intensity while the PSF player
controls the Blur kernel. Each player’s goal is to minimize his own functional, the solution of this game
is a pair of an optimal deblurred image and an optimal estimation of the blur kernel. This pair is none
other than the Nash Equilibrium. In [23| the authors associated two functionals f,(v,u) and f, (v, u)
with the Deblurring and PSF respectively:

1
il = 5lu@ v =gl + | A@)IDolds, 2)

1
Fulv,) = w0 = gl + [ (1= Bla)IDulds 3)
where [(z) is defined by f(z) =

2
# exp <—%g) denotes the Gaussian filter with the parameter o.

m, a is a threshold parameter, and G,(z) =

To compute the Nash equilibrium the authors of [23] conceived an alternating minimization algo-
rithm, they fix one variable and update the other: first they solve
min f,(v,u’) = v' L,
v
then they alternate

min f,(v',u) — u'*,
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i is the iteration number. In [24], we tested the effectiveness of this algorithm on various blurred
gray scale images. The following Figures 1 and 2 show an experiment on a blurred Lifting body and
Cameraman image.

a (Blurred image) b (Nash method (PSNR = 37.3))
Fig.1. The Nash method experiment on the Lifting Body image.

a (Blurred image) b (Nash method (PSNR = 29.6))

Fig. 2. The Nash method experiment on the Cameraman image.

2.2. Blind deconvolution using the Kalai-Smorodinsky solution

In [25] the authors went for a similar approach and solved the Blind Deconvolution problem using a
solution originating from game theory specifically: the Kalai-Smorodinsky solution using the famous
NBI method (Normal Boundary Intersection Method) [26].

Normal boundary intersection. The NBI method was developed by Das and Dennis in 1998 [26].
It is a technique used in multi-objective optimization to find a compromise solution between different
conflicting objectives.

Imagine you have a set of goals or objectives that you want to achieve, but these objectives may be
in conflict with each other. For example, you may want to maximize your profits while minimizing your
environmental impact. These objectives are often referred to as “objectives” or “criteria”’ in optimization
problems.

The NBI method works by finding a balance between these conflicting objectives. It does this by
defining a boundary, which represents the trade-offs between the objectives. This boundary is called
the “Pareto front”.

The NBI method is successful in producing an evenly distributed set of points on the Pareto
surface. This means that the method provides a good coverage of solutions across the trade-offs between
objectives. This even distribution allows decision-makers to have a comprehensive understanding of
the possible trade-offs and choose among a diverse set of solutions, for this reason the NBI method has
an advantage over two common multi-objective approaches: the weighting method and the e-constraint
method.
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Blind deconvolution. Using the NBI method, the authors [25] approach is based on the following
multiobjective optimization problem:

min P(v,u), (4)

v,

_ (fo(v,w)

P(v,u) = (fu(v,u)> (5)
unlike single objective optimization problems the concept of a single solution that minimizes two
functions f,(v,u) and f,(v,u), does not exist hence we look for an agreement, i.e. the Pareto front of
optimal solutions. To determine the Pareto front the authors used the NBI method (Normal Boundary
Intersection) [26]. It is known for generating a uniformly distributed points on the Pareto front unlike
other popular gradient-based methods such as the e-constraint method and the weighted sum method.

The NBI method identifies the Pareto optimal solutions represented on the Pareto front, by solving
K subproblems. The subproblem to be solved is expressed as the following

where

Igian fo(v,u), ©)
St. fo(v,u) — fu(v,u) +2a; —1=0.

e f, and f, are the normalized versions of f, and f,, respectively
Tl I e -
R A A

e fN and fY represent the worst possible value for the objective function f, and f, called the nadir
points. To find the nadir point, we maximize each objective function independently of the other.

e f*and f represent the best possible value for the objective functions f, and f, called the utopia
points. A solution that is closer to the utopia point is considered better. To find the utopia point,
we minimize each objective function without regard to the other one.

o o) = %, ke {0,1,...,K — 1}, where K is the number of points we identify in order to construct

the Pareto front.

The process of constructing the Pareto front is an iterative one: to generate the Pareto optimums we
need to solve the subproblem 6 above K times. Each Pareto solution has as coordinates the deblurred
image and an estimation of the PSF.

To determine the KSS solution, we draw a line connecting the nadir point and the utopian ideal
point. The point where the line intersects the Pareto front represents the Kalai-Smorodinsky solution,
as shown in the following Figure 3 (the blue curve is the Pareto front and the connecting line is the
pink line).

fo(v,u)

a (Blurred image) b (Pareto front) ¢ (KSS method (PSNR = 30.73))
Fig. 3. The KSS method experiment on the llama image.
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3. Comparison

For the aim of comparing the effectiveness of the two game theory based methods in deblurring, we
carry out various numerical experiments in MATLAB.

a (Original image) b (Blurred image)

¢ (Nash method (PSNR = 28.95))  d (KSS method (PSNR = 32.85))

Fig.4. Onion experiment.

¢ (Nash method (PSNR = 28.86))  d (KSS method (PSNR = 33.61))

Fig. 5. Lena experiment.
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(Nash method

¢ (Nash method (PSNR = 30.94))

a (Original image)

(Blurred image)

Table 1. SSIM comparison.

TRB TV W A

d (KSS method (PSNR = 32.46))

Fig. 6. Clover experiment.

(PSNR 30.81))

Fig. 7. 4 colors experiment.

Table 2. PSNR comparison.

d (KSS method
(PSNR = 33.29))

Image

Nash

KSS

Image

Nash

KSS

Lena
Clover
4 colors
Onion

0.935971230724093
0.910370776782113
0.994648952490064
0.973217306067959

0.968978731456625
0.913171924262159
0.996897202200127
0.990127380492750

Lena
Clover
4 colors
Onion

28.860235325232660
30.946577901048187
30.816323567981130
28.950770064622727

33.613569411605750
32.463748346461870
33.296178879817650
32.851751967518375

To assess the quality of the de-
blurring we use three popular image

quality metrics, RMSE: Root Mean
Square Error, SSIM: Structural Sim-
ilarity Index Measure and PSNR:
Peak Signal to Noise Ratio. For the
simulation we consider four colored

Table 3. RMSE comparison.

Image Nash KSS

Lena 0.001300099129425 4.351540790196359¢-04
Clover  8.041595240948711e-04 5.670549754181097e-04
4 colors  8.286433381309662e-04 4.681468570135449¢-04
Onion 0.001273277291196 5.185907943846604e-04

images: Lena, Onion, Clover and 4 colors as shown in Figures 4, 5, 6 and 7.
The Blind Deconvolution quality of the results are illustrated in Table 1, 2 and 3.
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5 x10% LenaR a7 x10% . Lena G nadir point 7.8 2<1'04 Lena B nadir point
2.9 i adir pd‘hﬁ 76l .
val ° 45
) 44 T4r
27
43
= = 72t
< 26 42 S
S 2 7r
= 25 41 =
4 s gl
s 6.8
3.9
661
23 28 -
- 37 utopia point 64 {itopia point T —..
. 9. - - - ! B
114 116 118 12 122 124 126 128 13 11.5 12 12.5 13 135 12.5 13 135 14 145 15
fu(v, u) Ju(v,u) fulv,u)
a (Red color component) b (Green color component) ¢ (Blue color component)
Fig. 9. Pareto front of the Lena image.
4 4
Clover R x10 Clover G nadir point 6.4 1o Clover B nadir point
_ %, * @ « Nash equ.
5. P 62|
@+ Nash equ.
5. 581 6
5. 560 58t
_ 5. bat __ 56
3 S
5 52) < 541
X 48 50 X521
4.6 481 5r
44 46| 48|
a25 7 44t 46|
utopia point . .
4 , , , , 49 , , , , , , , , , 44 utopia ppint . . . e ,
195 20 205 21 215 22721 215 22 225 23 235 24 245 25 255 195 20 205 21 215 22 225 23
Julv,u) fulv,w) fulv,u)
a (Red color component) b (Green color component) ¢ (Blue color component)
Fig.10. Pareto front of the Clover image.
o6 x10° 4colors R p x 104 4colors G nadir point 10 x104 4colors B nadir point
A : @ + Nash equ. @ < Nash equ.
nadir point5 8 - 051
561
ol
54l
= 52) =857
£ 2
2 2 & 8f
a8t
75}
46}
44¢ G
utopia point
u8 ‘ ‘ ‘ ‘ ‘ ‘ .42 65
16.25 16.3 16.35 16.4 16.45 16.5 16.55 16.6 201 202 203 204 205 206 207 208 209 155 156 157 158 159 16 161  16.2
fyvw) fu(v,u) fulv,u)
a (Red color component) b (Green color component) ¢ (Blue color component)

Fig.11. Pareto front of the 4 colors image.
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Figures 8, 9, 10 and 11 below represent the KSS solution on the Pareto front. We look for the KSS
solution for each component (Red, Green and Blue) of the colored images. We drew the Nash solution
in green.

4. Conclusions and discussion

In this study we compare two game theory based Blind Deconvolution methods: one is based on
the Nash equilibrium and the other is based on the Kalai-Smorodinsky solution. Comparison of two
approaches on color images: Onion, Lena, Clover and 4 colors show that the Kalai-Smorodinsky
solution method produces the better results with regard to the image quality indicators SSIM, RMSE
and PNSR.

We also observed in Figures 8, 9, 10 and 11 that the Nash equilibrium rarely make it on the Pareto
front and the Nash and the Kalai-Smorodinsky solutions never coincide in all experiments.

Intuitively we say that the KSS deblurring method performs better than the Nash deblurring
method in four experiments because all Nash equilibria are inefficient in the Pareto sense as seen in
Figures 8, 9, 10 and 11.
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MopiBHANbHE gocnig>keHHs meToaiB Teopil irop
ANS CNinol feKoHBOMOLiI

Hacp H., Myccain H., I'yacuoyan O.

FSTM, Vnisepcumem Xacawa II Kacabaanku, Moxammedia, n.c. 146, Mapoxxo

Mera 1poro mocsiKeHHsT TOJISATAE€ B TOMY, IMOD IMiJIKPECIUTH MOTEHI[AJ BUKOPUCTAH-
Hsi Teopil irop st poboTu 3i CJIMO JIEKOHBOJIIOIIED 300paKeHb. Posrisimaerbes cra-
TUYHA Tpa JIBOX I'paBIiB. lleprmuii rpasBerb KOHTPOJIIOE IHTEHCUBHICTH 300paKeHHS, &
JPYTHil TPaBellb KOHTPOJIIOE s/IPO PO3MUTTsA. ¥ Iiif I'pi KOKEH T'paBellb Mparte MiHimi-
3yBaTu BiaacHUil dyukiionasa. Pe3ynbraTom rpum € mapa cTpaTeriit: po3MUTICTH 300pa-
JKEeHHsI Ta OIHKA s/Ipa PO3MUTTH, IO MiHiMi3ye aBa (dyukmionann. Busnadaerbes or-
TUMAJIbHE 3MEHIIIEHHS PO3MHUTOCTI 300paKeHHs 3a JOMOMOIOKI0 JIBOX KOHKDETHUX ITijI-
xoaiB Teopil irop, memonasHo npejcrasienux: Meron Hema [Meskine D., Moussaid N.,
Berhich S. Blind image deblurring by game theory. Proceedings of the 2nd International
Conference on Networking, Information Systems & Security (NISS ’19). 31 (2019)] ta
meron, po3s’ssysannsa Kamai-Cmopogincskoro [Nasr N., Moussaid N., Gouasnouane O.
The Kalai Smorodinsky solution for blind deconvolution. Computational and Applied
Mathematics. 41, 222 (2022)]. OuiHIO€THCH IPOLYKTUBHICTD JBOX METO/IB 3a JOIIOMOIOIO
9UCIOBUX €KCIIEPUMEHTIB i BUKOPUCTAHHS JETKNX 00 €KTUBHUX MOKA3HUKIB SIKOCTI.

Knto4oBi cnoBa: smeHwenta po3amMumoci; meopis i20p; 6a2amoyisbosa onmumi3ayis.
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