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In this paper, we delve into the analysis of an epidemic model for a vector-borne disease.
Our study focuses on utilizing a baseline version of the ordinary differential equations
(ODE) model to capture the dynamics of the disease transmission. Specifically, we aim
to study the long-term behavior and properties of the model’s solutions using a novel
analytical approach known as the Boubaker polynomial Expansion Scheme (BPES). Fur-
thermore, to complement our theoretical analysis, we conduct numerical simulations to
provide a more practical perspective on the epidemic.
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1. Introduction

Stability analysis of a vector-borne disease model with direct transmission involves the study of the
long-term behavior of the disease dynamics in a population. This type of model takes into consideration
the transmission of the disease through both vectors (such as mosquitoes) and direct contact between
infected individuals. The stability of the model refers to the behavior of the disease in the long run
and whether it will die out or persist in the population. The goal of stability analysis is to determine
the conditions under which the disease-free equilibrium (when there are no infected individuals in the
population) is stable or unstable, and to identify the conditions that lead to the establishment and
persistence of the disease in a population. This information is crucial in informing public health policies
and intervention strategies aimed at controlling and preventing the spread of the disease.

Disease-transmitting biological agents (anthropoids), known as vectors, are the main means of
transmission for infectious diseases produced by viruses, bacteria, protozoa, or rickettsia. Vectors
transport the disease without becoming ill themselves. The most widespread vector-borne diseases
in the world is malaria, which is spread by mosquitoes. The mosquitoes are carriers of a variety of
infectious illnesses, most notably dengue (the second most important vector-borne disease).

Currently, the disease Leptospirosis has emerged as an infectious disease of great importance. This
type of infection is found in urban areas of industrialized countries and in rural areas around the
world. Due to delays in two diagnoses, absences of adequate clinical infrastructure and capacity, and
due the evil that can include pathogenicity of a number of leptospiral strains or genetically determined
host immunopathological responses, mortality remains significant. To depict the dynamics of both
compartments susceptible, recovered, and infected human population of vectors, several models have
been proposed [1–3]. To explore the behavior of the leptospirosis disease, Pongsuumpun et al. [4]
offered a mathematical formulation. They define the rate of change for rats as well as for young and
old human populations. By looking at various illnesses and leptospirosis in Thailand, Triampo et
al. examined deterministic models for the spread of the disease described in [5]. In order to understand
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the dynamic behavior and the function of the optimal control theory of the disease, Zaman et al. [6]
looked at the real data taken into account in [5]. Two non-linear models of the human race and the
vector population were integrated by Zaman et al. [7] who used the Lyapunov method to examine local
and global stability.

An analytical continuous solution is proposed in the current study, based on the BPES, the method
has several key advantages over comparable approaches, including its ease of use and the validity and
trustworthiness of the results it produces [8–10], especially when it is challenging to construct precise
solution expressions.

The BPES is a mathematical method used in the field of computational fluid dynamics. It is a
numerical technique that allows for the efficient and accurate solution of complex partial differential
equations (PDEs) that describe fluid flow phenomena. BPES is based on the idea of expanding the
solution of the PDE into a series of orthogonal polynomials. This expansion allows for the representa-
tion of the solution in a compact form and reduces the number of degrees of freedom required to solve
the PDE. This, in turn, leads to improved computational efficiency and accuracy compared to other
numerical methods. BPES has been applied in various fields including aerodynamics, heat transfer,
and combustion, and has shown promising results in the simulation of complex fluid flow phenomena.

In this paper, we expand the model offered by Zaman et al. [6, 7] considering the interaction of
man likely infected and vector-related illness mortality in both human and infected vectors. In the
second section, we present the model and the biological parameters. The third section analyzes the
model using BPES. At the end, we provide numerical example to illustrate results obtained through
the paper.

2. Mathematical model

Firstly, we extend the model shown in [6, 7] considering the interaction of man likely infected vector-
borne disease and related mortality in both human and infected vectors. To comprehend the model of
the epidemic and their properties, at the beginning we set the parameter involved in the model and
we elaborate the mathematical formulation.

Therefore, in order to gain a deeper comprehension of malaria transmission as well as the impact
and contribution of immigration on our topic, as well as the spreading of the disease into free areas,
we will develop a mathematical model similar to that of the disease using ODE where mosquitoes
and people encounter one another and subsequently pass on the infection through transmission. Our
mathematical model explains how contagious are illnesses spread by mosquitoes. The number of people
worldwide is Nh(t) = x1(t) + x2(t) + x3(t) and they are classified into three classes: susceptible, x1;
infectious, x2 and recovered, x3.

Individuals enter the susceptible class in two ways: either through birth (with all compartments
being filled at the natural birth rate bh) or through immigration at a steady rate Ωh. Susceptible
individuals can become infected either through direct contact with infected humans at a constant rate
β1, or through exposure to infected mosquitoes at a constant rate β2. Contaminated individuals recover
at the rate γh, and all compartments depart the population due to a per capita emigration rate that
depends on density and a natural death rate, fh(Nh) = µ1h + µ2hNh. Infected individuals are also
reduced by disease related death at the rate δh.

However, there exist two categories of mosquitoes: those who are susceptible (x4) and those who
are infected (x5). The total mosquito population is Nv(t) = x4(t) + x5(t).

Hence, when a susceptible mosquito bites an infectious human, the mosquito contracts the disease
and enters the x5 class, individuals join the susceptible compartment at the rate Ωv, and those who
are susceptible become infected at the rate β3x5 and all compartments reach susceptible compartment
at the natural birth rate bv (due to the fact that only female mosquitoes bite humans and animals to
obtain lipids and proteins, which are essential components of blood to enable female mosquitoes to
reproduce and lay their eggs as a result, male insects are not included in our model) and are decreased
according to the affine function fv(Nv) = µ1v + µ2vNv (mosquito mortality and emigration rates are
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contingent on the per capita density of the population). Infected individuals are also reduced by disease
related death at the rate δv.

Figure 1 explains how malaria transmission proceeds in our mathematical model (see [8]):
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Fig. 1. Schematic diagram of system (1).
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dx1

dt
= gh(Nh)− β1x1x2 − β2x1x5 − fh(Nh)x1,

dx2

dt
= β1x1x2 + β2x1x5 − (γh + fh(Nh))x2,

dx3

dt
= γhx2 − fh(Nh)x3,

dx4

dt
= gv(Nv)− β3x4x2 − fv(Nv)x4,

dx5

dt
= β3x4x2 − fv(Nv)x5,

(1)

with initial conditions

x1(0) > 0, x2(0) > 0, x3(0) > 0, x4(0) > 0, and x5(0) > 0, (2)

x1 is number of susceptible human, x2 is the proportion of the population’s people who have the
disease, x3 is the population’s number, which is recovered, x4 is susceptible vector, x5 is infectious
vector, γh is disease related death rate of infected individuals, β1 is direct transmission from infected
human, β2 is direct transmission from infected vector, and β3 is disease carrying of susceptible vector
per host per unit time;

fh(Nh) = µ1,h + µ2,hNh,

fv(Nv) = µ1,v + µ2,vNv,

gh(Nh) = Ωh + bhNh,

gv(Nv) = Ωv + bvNv.
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The following table provides definitions for parameters and variables:

Table 1. Parameter and variable descriptions for Model (1).

Variables Descriptions

x1 How susceptible are humans
x2 How may humans have the disease
x3 How may humans are recovered
x4 How susceptibleare mosquitoes
x5 How may mosquitoes have the disease
Nh The total population of humans
Nv The total population of mosquitoes
Parameters Descriptions

Ωh Human migration rate
Ωv Mosquitoes immigration rate
bh Human’s birth rate
bv Mosquitoes’ birth rate
µ1h Part of the human mortality (and emigration) rate that is not dependent on density
µ2h Part of the human mortality (and emigration) rate that dependent on density
µ1v Part of the mosquitoes mortality (and emigration) rate that is not dependent on density
µ2v Part of the mosquitoes mortality (and emigration) rate that is dependent on density
γh The rate at which humans transition from the infectious state to the recovered state
δh The rate of mortality caused by the disease in humans
δv The rate of mortality caused by the disease in mosquitoes
β1 Rate of virus transfer from an infected person to a vulnerable person
β2 Rate of infection from an infected mosquito to a person who is susceptible
β3 Rate of infection from an infected person to a mosquito that is vulnerable

As a result, it is important to demonstrate that the state variables are not always negative. We
demonstrate the solution’s boundness and positivity.

The total human population Nh(t) is defined by Nh(t) = x1(t) + x2(t) + x3(t) and it verifies the
following equation

dNh

dt
= gh(Nh)− fh(Nh)Nh − δhx2

= Ωh − (µ1h − bh)Nh − µ2hN
2
h − δhx2. (3)

Size of the vectors population Nv(t) can be defined by Nv(t) = x4(t) + x5(t) or from the differential
equation

dNv

dt
= gv(Nv)− fv(Nv)Nv − δvx5

= Ωv − (µ1v − bv)Nv − µ2vN
2
v − δvx5. (4)

It follows from (3) and (4) that
dNh

dt
6 Ωh − (µ1h − bh)Nh and

dNv

dt
6 Ωv − (µ1v − bv)Nv.

Moreover, we have














dNh

dt
6 0 if

Ωh

µ1h − bh
6 Nh and µ1h > bh,

dNv

dt
6 0 if

Ωv

µ1v − bv
6 Nv and µ1v > bv.

Let V1 = lim sup
t→+∞

Nh, and V2 = lim sup
t→+∞

Nv. Then,

V1 6
Ωh

µ1h − bh
and V2 6

Ωv

µ1v − bv
.

Consequently, the system’s feasible region (1) is

Ω =

{

(x1, x2, x3, x4, x5) ∈ R
5
+, V1 6

Ωh

µ1h − bh
and V2 6

Ωv

µ1v − bv

}

.
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Lemma 1. Let (x1, x2, x3, x4, x5) represent the system (1)’s solution with initial conditions (2). The
closed set Ω =

{

(x1, x2, x3, x4, x5) ∈ R
5
+, V1 6

Ωh

µ1h−bh
and V2 6 Ωv

µ1v−bv

}

is attractive and positively
invariant.

Proof. Considering the next Lyapunov function

V (t) = (V1(t), V2(t)) = (x1 + x2 + x3, x4 + x5),

its derivative is
dV

dt
=
(

Ωh − (µ1h − bh)V1 − µ2hV
2
1 − δhx1,Λv − (µ1v − bv)V2 − µ2vV

2
2 − δvx5

)

.

It is easy to prove that














dV1

dt
6 Ωh − (µ1h − bh)V1 6 0 for V1 >

Ωh

µ1h − bh
,

dV2

dt
6 Ωv − (µ1v − bv)V2 6 0 for V2 >

Ωv

µ1v − bv
.

(5)

It follows from (5) that dV
dt

6 0 that’s why the set Ω is positively invariant.
Also,

0 6 (V1, V2)

6

(

V1(0) e
−(µ1h−bh)t +

Ωh

µ1h − bh

(

1− e−(µ1h−bh)t
)

, V2(0) e
−(µ1v−bv)t +

Ωv

µ1v − bv

(

1− e−(µ1v−bv)t
)

)

.

Thus as t → ∞, 0 6 (V1, V2) 6
(

Ωh

µ1h−bh
, Ωv

µ1v−bv

)

, we conclude that Ω is an attracting set. �

The model (1) is correctly stated mathematically and epidemiologically within the domain. There-
fore, studying the dynamics of this fundamental model in Ω is adequate.

3. Investigations and analysis

The following lemma, which will be necessary in the sequel.

Lemma 2. The total population Nh and Nv are in the form:

Nh(t) = N0
h +

1

u(0)e2m2hN
0

h
−(bh−m1h)t + 2m2h

2m2hN
0

h
−(bh−m1h)

,

Nv(t) = N0
v +

1

u(0)e2m2vN0
v−(bv−m1v)t + 2m2v

2m2vN0
v−(bv−m1v)

,

(6)

where

N0
v =

(bv −m1v) +
√

(bv −m1v)2 + 4m2vDv

2m2v
.

Proof. First, the total host population size Nh(t) is calculated by Nh(t) = x1(t) + x2(t) + x3(t) or
alternatively, using the differential equation obtained from ((1)),

Nh

dt
= gh(Nh)− fh(Nh)Nh = −m2hN

2
h + (bh −m1hNh) +Dh. (7)

The total number of vectors Nv(t) can be found by Nv(t) = x4(t) + x5(t) from

Nv

dt
= gv(Nv)− fv(Nv)Nv = −m2vN

2
v + (bv −m1vNv) +Dv.

The differential equation (7) is a Ricatti equation. Its solution is written as Nh = N0
h + z, where a

particular solution of equation 7 and z is the solution of the Bernoulli equation as follows:

dz

dt
= (−m2hN

0
h + (bh −m1h))z − 2m2hz

2

with the change of variable u = 1
z
, there will be a linear differential equation.
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Hence

u(t) = u(0)e(2m2hN
0

h
−(bh−m1h)t +

2m2h

2m2hN
0
h − (bh −m1h)

.

Therefore

z(t) =
1

u(0)e(2m2hN
0

h
−(bh−m1h)t + 2m2h

2m2hN
0

h
−(bh−m1h)

.

So, the expression of the solution is

Nh(t) = N0
h +

1

u(0)e(2m2hN
0

h
−(bh−m1h)t + 2m2h

2m2hN
0

h
−(bh−m1h)

.

Similarly,

Nv(t) = N0
v +

1

u(0)e2m2vN0
v−(bv−m1v)t + 2m2v

2m2vN0
v−(bv−m1v)

,

where

N0
v =

(bv −m1v) +
√

(bv −m1v)2 + 4m2vDv

2m2V
.

Expressions of Nh and Nv just allow ourselves to obtain the behavior of variables xi for i = 1, . . . , 5,
which finalize the proof of the Lemma. �

For given values of the coefficients (2), the solution of Eq. (1) is achieved using the BPES [9–12].
The BPES is a polynomial family with integer coefficients. These polynomials were established as

part of an applied physics study. In the following, we recall some basic concepts of 4n-orde BPES in
orthogonal basis that are used throughout the article [9–12].

Theorem 1. Applying he BPES through adjusting the expressions for solutions the system (1):

xi(t)|i=1,...,5 =
1

2N0

N0
∑

k=1

λk,i ×B4k(rkt), (8)

where B4k are the 4k-order BPES, t is the normalized time, rk are B4k smallest positive roots, N0 is
a prefixed integer, λk,i|(k=1,...,N0;i=1,...,5) are unknown pondering real coefficients.

Proof. From Eq. (1):

N0
∑

k=1

λk,1 × rk
dB4k(rkt)

dt
= Ωh + bhNh −

β1

2N0

(

N0
∑

k=1

λk,1B4k(rkt)

)(

N0
∑

k=1

λk,2B4k(rkt)

)

−
β2

2N0

(

N0
∑

k=1

λk,1B4k(rkt)

)(

N0
∑

k=1

λk,5B4k(rkt)

)

− (µ1,h + µ2,hNh)

(

N0
∑

k=1

λk,1B4k(rkt)

)

,

N0
∑

k=1

λk,2 × rk
dB4k(rkt)

dt
=

β1

2N0

(

N0
∑

k=1

λk,1B4k(rkt)

)(

N0
∑

k=1

λk,2B4k(rkt)

)

−
β2

2N0

(

N0
∑

k=1

λk,1B4k(rkt)

)(

N0
∑

k=1

λk,5B4k(rkt)

)

− (γh + µ1,h + µ2,hNh)

(

N0
∑

k=1

λk,2B4k(rkt)

)

,

N0
∑

k=1

λk,3 × rk
dB4k(rkt)

dt
= γh

(

N0
∑

k=1

λk,2B4k(rkt)

)

− (µ1,h + µ2,hNh)

(

N0
∑

k=1

λk,4B4k(rkt)

)

,
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N0
∑

k=1

λk,4 × rk
dB4k(rkt)

dt
= Ωv + bvNv −

β3

2N0

(

N0
∑

k=1

λk,4B4k(rkt)

)(

N0
∑

k=1

λk,2B4k(rkt)

)

,

− (µ1,v + µ2,vNv)

(

N0
∑

k=1

λk,4B4k(rkt)

)

N0
∑

k=1

λk,5 × rk
dB4k(rkt)

dt
=

β3

2N0

(

N0
∑

k=1

λk,4B4k(rkt)

)(

N0
∑

k=1

λk,2B4k(rkt)

)

− (µ1,v + µ2,vNv)

(

N0
∑

k=1

λk,5B4k(rkt)

)

.

Regardless of the main equation features, the BPES confirms the linked boundary conditions expressed
by biological conditions. Indeed, using the properties of the first derivatives of BPES (see [9, 10]):















N
∑

k=1

B4k(x)|x=0 = −2N 6= 0,

N
∑

k=1

B4k(x)|x=rk = 0,

and















N
∑

k=1

dB4k(x)

dx

∣

∣

∣

∣

x=0

= 0,

N
∑

k=1

dB4k(x)

dx

∣

∣

∣

∣

x=rk

=
N
∑

k=1

Hk,

(9)

with

Hn = B′
4n(rn) =

4rn(2− r2n)×
∑N

k=1B
2
4k(rn)

B4(n+1)(rn)
+ 4r3n.

So, we verify the boundary conditions.
Algorithm. By the next four steps, we find the BPES.

1. Integrating the entire expressions provided by Eq. (4) along the time domain for a certain value of
N0.

2. Establishing the next five systems (for i = 1, . . . , 5):

[Θ][λ]i = [C], (10)

with
[Θ] = (θi,j)i,j=1,...,N0

; [λ]i = (λj,i)j=1,...,N0
and [C] = (cj)j=1,...,N0

.

Utilizing the Householder [13, 14] algorithm, the system (8) is solved.
Householder algorithm consists of establishing a serial of orthogonal square arrays [H]ν |ν=1,...,M0

defined, at a stage ν, by relation (11),

[H]ν = Iν − 2[U ][U ]T =









1 0 0 0
0 1 . . . 0
0 . . . . . . 0
0 0 0 1









− 2









u1
u2
u3
. . .









(

u1 u2 u3 . . .
)

, (11)

with

[Θ] = [H]1[H]2[H]3 . . . [H]ν [R] = [Ω]ν [R], [U ] =
[Θ]− [Ω]ν
‖[Θ]− [Ω]ν‖

,

√

√

√

√

n
∑

k=1

u2k = 1.

As per the Householder algorithm, the array [H]ν satisfies the triangulating relation:

[H]ν =











√

∑n
k=1 a

2
k1 a′12 a′13 . . .

0 a′22 a′23 . . .

0 a′32 a′33 . . .

0 . . . . . . . . .











. (12)

Utilizing the identical method to the remaining array of minor order [A]′

[A]′ =





a′22 a′23 . . .

a′32 a′33 . . .

. . . . . . . . .



 (13)
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and to next minors leads to the final equation (14)

[A] = [H]1[H]2[H]3 . . . [H]M0
[R] = [Ω]M0

[R], (14)

with [Ω]M0
orthogonal and [R] upper triangle. Equation (14) can be readily solved using a backward

stepping procedure, thanks to the upper triangular nature of the array [R]:

[β]sol = [R]−1[Ω]−1[B]. (15)

To assess convergence, the Minimum Square Method (MSM) is employed. This approach involves
halting iterations when the value of the functional quantity (16) becomes smaller than a predeter-
mined threshold value ε0,

‖[A]× [β]sol − [B]‖ 6 ε0. (16)

3. Incrementing N0.

4. Testing the convergence of the coefficients λ
(Sol.)
k,i |k=1,...,N0,i=1,...,5,

x
(Sol.)
i |i=1,...,5 =

1

2N0

N0
∑

k=1

λ
(Sol.)
k,i B4k(rkt). �

4. Simulations

In this section, we will give a numerical example to illustrate the theoretical approach. Let consider
the following initial conditions for our simulation (x1(0), x2(0), x3(0)) = (3000, 1000, 500) for humans

Table 2. Model parameter values.

Parameter Ωh Ωv β1 β2 β3 µ1,h µ1,v

Value 0.05 0.02 0.04 0.04 0.04 0.0001 0.001

and (x4(0), x5(0)) = (5000, 3000). The
overall boundary conditions and coef-
ficient values are gathered in following
Table 2.

By applying the algorithm shown in Section 3, we get the following graphs.

Fig. 2. Plots of the human population. Fig. 3. Plots of the human population.

Fig. 4. Dual diagram (Human-vector).

We expanded the model to take into account
the interaction of infected humans with suscep-
tibility rates of vector and disease-related death
in both infected humans and vectors by using
the Boubaker approach to determine the numer-
ical solution and by selecting the parameter ap-
propriate. Because it is challenging to select all
the factors for the quantitative estimate, we em-
ploy fictitious sets of parameters to confirm the
accuracy of our analytical findings. We used the
parameter values from Table 2 for the numerical
simulation. In fact, we have taken into account

various parameter values for the dynamic model of the numerical simulation of biologically relevant
scenarios.
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The numerical simulation of the human population is shown in Figure 2. The number of susceptible
people falls as the number of infected people rises. When humans became infected by growing human
declines, they recovered slowly. The population of susceptible and infected vectors is depicted in
Figure 3. Population of infected vectors increases due to the interaction of the sensitive men. Figure 3
shows the endemic equilibrium before the bifurcation point.

5. Conclusion

This research introduces an analytical solution and conducts a stability analysis of the novel vector-
borne disease model incorporating direct transmission. The utilization of this solution provides a
robust framework for implementing the Boubaker Polynomials Expansion Scheme (BPES), especially
in cases where exact solution expressions pose challenges. Extensive testing has confirmed the method’s
convergence, affirming its reliability and effectiveness in modeling vector-borne diseases with direct
transmission.
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Стiйкiсть моделi трансмiсивних хворiб iз прямою передачею з
використанням пiдходу полiномiв Бубакера
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У цiй статтi заглиблюємося в аналiз моделi епiдемiї трансмiсивних хворiб. Наше до-
слiдження зосереджено на використаннi базової версiї моделi звичайних диферен-
цiальних рiвнянь (ODE) для опису динамiки передавання захворювання. Зокрема,
намагаємося дослiдити довгострокову поведiнку та властивостi розв’язкiв моделi за
допомогою нового аналiтичного пiдходу, вiдомого як схема розвинення полiномiв Бу-
бакера (BPES). Крiм того, для доповнення нашого теоретичного аналiзу, проведено
чисельне моделювання, щоб забезпечити бiльш практичний погляд на епiдемiю.

Ключовi слова: малярiя; епiдемiчнi моделi; переноснi; стiйкiсть, полiном Бубаке-

ра.
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