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In this paper, we propose and investigate the global dynamics of a SARS-CoV-2 infection
model with diffusion and antiviral treatment. The proposed model takes into account the
two modes of transmission (virus-to-cell and cell-to-cell), the lytic and nonlytic immune
responses. The diffusion into the model is formulated by the regional fractional Lapla-
cian operator. Furthermore, the global asymptotic stability of equilibria is rigorously
established by means of a new proposed method constructing Lyapunov functions for a
class of partial differential equations (PDEs) with regional fractional Laplacian operator.
The proposed method is applied to the classical reaction-diffusion equations with normal
diffusion.
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1. Introduction

The COVID-19 pandemic has swept across the globe, affecting millions of people and challenging
healthcare systems worldwide. As of the most recent report from the World Health Organization
(WHO), there have been over 400 million confirmed cases and over 5 million deaths worldwide. The
disease is caused by the novel coronavirus SARS-CoV-2, which primarily spreads through respiratory
droplets and close contact with infected individuals. In addition to fever, cough, and difficulty breath-
ing, patients with COVID-19 may experience a wide range of symptoms, including loss of taste and
smell, fatigue, and gastrointestinal issues. Understanding the transmission dynamics and clinical fea-
tures of the disease is crucial for controlling its spread and improving patient outcomes. Mathematical
modeling has been used extensively to study the spread of the SARS-CoV-2 virus and to inform pub-
lic health policies aimed at mitigating its impact. One common approach to modeling the spread of
infectious diseases is to use partial differential equations (PDEs) with diffusion terms. However, the
diffusion term in these equations is typically assumed to be anomalous, meaning that the spread is not
regular in space and time. Many recent studies report the normal spacial diffusion of SARS-CoV-2
virus. For instance Elaiw et al. [1] designed a reaction-diffusion model to depict the dynamic processes
of SARS-CoV-2 infection inside cancer patients. Kevrekidis et al. [2] developed a spatially distributed
version of a compartmental epidemiological model in the form of reaction-diffusion equations to ex-
amine the spatial modeling of the outbreak of COVID-19 in Andalusia (Spain) and the mainland of
Greece. Elaiw et al. [3] constructed a model that characterizes the in-host dynamics of HTLV-I and
SARS-CoV-2 co-infection.

Recently, PDEs involving fractional Laplacian operator are used to describe the dynamics of systems
with anomalous diffusion. This type of operator has received much attention in both pure and applied
mathematics. Bucur and Valdinoci [4] observed that some processes occur in nature such as the natural
selection can be modeled by the nonlocal fractional Laplacian operator because this natural phenomena
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may favour some kind of nonlocal diffusion and that a predator can decide to use a nonlocal dispersive
strategy to hunt its preys more efficiently. In [5], the authors proposed a mathematical PDE model
with Laplacian operator for pattern formation in coral reefs and they derived the conditions for Turing
bifurcation through linear stability analysis of the proposed PDE model. Nezza et al. [6] dealt with
the fractional Sobolev spaces and they analyzed the relations among some of their possible definitions
and their role in the trace theory. Vázquez [7] described two models of flow in porous media including
nonlocal diffusion effects.

The fractional Laplacian is a nonlocal operator and it allows to describe the motions of random
particles in the entire set Rn. However, these types of motions can be modeled by the regional fractional
Laplacian operator when particles move through a region Ω of Rn which are not allowed to jump outside
Ω but are either reflected back into Ω or killed when they reach the boundary ∂Ω. The last operator
was introduced by Bogdan et al. [8] by limiting the integral in the fractional Laplacian in the region
Ω. A comparative study about the properties of the fractional Laplacian, regional fractional Laplacian
and other nonlocal diffusion operators was carefully investigated in [9].

Most nonlinear systems of PDEs that describe spatiotemporal dynamics of real phenomena in
various fields of science and engineering are complex and cannot be solved analytically. It well be more
suitable to study the qualitative properties of solutions such as global stability. Accordingly, Hattaf
and Yousfi [10] studied the global stability of some reaction-diffusion equations in biology by developing
an efficient method for the construction of Lyapunov functions of a class of PDEs with and without
delays. Such Lyapunov functions for PDEs are obtained from those for ordinary differential equations
(ODEs). Furthermore, the method has been applied by many researchers. For instance, Zhang et
al. [11] analyzed the global asymptotic stability of a chemostat model with maintenance energy by
constructing a Lyapunov function inspired by the method of [10]. In [12], the authors used the same
method to prove the global stability of a nonlocal and time-delayed reaction-diffusion epidemic model.
Elaiw and Al Agha [13] also used the method for constructing appropriate Lyapunov functions for
a reaction-diffusion model that describes the within-host dynamics of Malaria infection in presence
of adaptive immunity. In addition, the method is recently extended in [14] for fractional differential
equations (FDEs) with normal diffusion, and in [15] for PDEs with fractional Laplacian operator.

In the literature, most mathematical models formulated by PDEs to describe the diffusion of viral
infections like SARS-CoV-2 used normal Laplacian operator. In this paper, we propose a mathematical
model for SARS-CoV-2 infection with regional fractional Laplacian operator. To do this, the next
section is devoted to SARS-CoV-2 model formulation and their equilibria. A new efficient method for
constructing Lyapunov function for a class of PDEs with and without delay is presented in Section 3.
Section 4 is devoted to the global stability of the proposed model by mean of the new method. Section 5
establishes numerical simulations. Finally, Section 6 concludes the paper.

2. SARS-CoV-2 model formulation and equilibria

In this section, we propose a mathematical model for SARS-CoV-2 infection with fractional diffusion,
antiviral treatment, two modes of transmission, lytic and nonlytic immune response. This model is
formulated by the following nonlinear system of PDEs















































∂U

∂t
= −dU (−∆)sΩU(x, t) + λ−mUU(x, t)−

β1U(x, t)V (x, t)

1 + q1C(x, t)
−

β2U(x, t)I(x, t)

1 + q2C(x, t)
,

∂I

∂t
= −dI(−∆)sΩI(x, t) +

β1U(x, t)V (x, t)

1 + q1C(x, t)
+

β2U(x, t)I(x, t)

1 + q2C(x, t)
−mII(x, t)− pI(x, t)C(x, t),

∂V

∂t
= −dV (−∆)sΩV (x, t) + k(1− ε)I(x, t) −mV V (x, t),

∂C

∂t
= −dC(−∆)sΩC(x, t) + σI(x, t)C(x, t) −mCC(x, t),

(1)

where the concentrations of uninfected pulmonary epithelial cells, infected pulmonary epithelial cells,
free virus particles, and CTL cells are denoted by U(x, t), I(x, t), V (x, t), and C(x, t), respectively, at
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position x and time t. The generation rate of uninfected pulmonary epithelial cells is given by λ, and
their death rate is denoted by mUU . Infection can occur via free virus particles at rate β1UV , which is
inhibited by nonlytic immune response at rate 1 + q1C, or via direct contact with infected pulmonary
epithelial cells at rate β2UI, which is also inhibited by nonlytic immune response at rate 1 + q2C.
Infected pulmonary epithelial cells die at rate mII and can be targeted by lytic immune responses
at rate pIC. The remaining parameters also have specific biological interpretations, k denotes the
production rate of virus from infected pulmonary epithelial cells, mV represents the clearance rate of
virus, σ is the immune responsiveness rate, and mC reflects the death rate of CTL cells. Additionally,
non-negative constants dU , dI , dV , and dC are the coefficients of diffusion. Finally, the parameter ε

represents the effectiveness of antiviral treatment that blocks the production of viral particles. It takes
values between 0 and 1, where a higher value indicates greater effectiveness.

In the field of biology, the diffusion of virus and cells is known to exhibit an abnormal behaviour,
which can be mathematically described by the regional fractional Laplacian operator (−∆)sΩ. This
operator is presented in [16] by

(−∆)sΩu(x) = C(n, s) PV

∫

Ω

u(x)− u(y)

|x− y|n+2s
dy

= C(n, s) lim
ε→0+

∫

{y∈Ω,|x−y|>ε}

u(x)− u(y)

|x− y|n+2s
dy,

(2)

where the notation PV indicates principal value and C(n, s) is a normalization constant given by

C(n, s) =
s 4sΓ(s+ n

2 )

π
n

2 Γ(1− s)
, (3)

with s ∈ (0, 1), Γ is the gamma function. The operator (−∆)sΩ describes the random motion of a
particle jumping from a point x ∈ Ω to another y ∈ Ω with intensity proportional to |x − y|−n−2s.
Furthermore, it should be noted that particles cannot escape from Ω and instead are either reflected
back inside or eliminated upon reaching the boundary ∂Ω. Given this constraint, we can now examine
the problem stated in (1) with the following generalized Neumann boundary conditions

N 2−2sU = N 2−2sI = N 2−2sV = N 2−2sC = 0, on ∂Ω× (0,+∞),

where N 2−2su denotes the fractional normal derivative of u in direction of the outer normal vector
defined as in [16] by

N 2−2su(z) = − lim
t→0+

du(z + n(z)t)

dt
t2−2s,

n(z) is the inner normal vector of ∂Ω at the point z ∈ ∂Ω. In this paper, the initial conditions for
model (1) are taken as follows

U(x, 0) > 0, I(x, 0) > 0, V (x, 0) > 0, C(x, 0) > 0, x ∈ Ω.
It is important to note that model (1) improves and generalizes the ODE model proposed by Hattaf

and Yousfi in [17] by considering the diffusion and antiviral treatment.
The system (1) invariably possesses an infection-free equilibrium, denoted as P0(U0, 0, 0, 0), where

U0 =
λ

mU
, indicating a healthy state. As a result, we can define the basic reproduction number for our

PDE model in the following way

R0 =
λ
(

k(1− ε)β1 +mV β2
)

mUmImV
.

As per the biological and referenced [18, 19] perspectives, R0 can be separated into two constituent
parts, namely R01 and R02, where the basic reproduction number of the virus-to-cell infection mode
is represented by R01, which is calculated as λk(1−ε)β1

mUmImV
. On the other hand, the basic reproduction

number of the second direct cell-to-cell mode is represented by R02, which is calculated as λβ2

mUmI
. The

remaining steady states of system (1) that are spatially uniform can be described by the following
system

0 = λ−mUU −
β1UV

1 + q1C
−

β2UI

1 + q2C
,
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0 =
β1UV

1 + q1C
+

β2UI

1 + q2C
−mII − pIC,

0 = k(1− ε)I −mV V,

0 = σIC −mCC.

Based on the last equation, we can deduce that either C = 0 or I = mc

σ
. Hence, we will consider two

different cases. In the first case, where there is no immune response (C = 0), the following expressions
are obtained

U1 =
λ

mUR0
, I1 =

λ(R0 − 1)

mIR0
, V1 =

k(1− ε)λ(R0 − 1)

mImV R0
.

Thus, if R0 > 1, the point P1(U1, I1, V1, 0) equilibrium of model (1) is called the infection equilibrium
without cellular immunity.

In the case of presence of immune response, system (1) has another biological steady state that
verify the equalities in flow

I =
mc

σ
, V =

k(1− ε)mC

σmV

, C =
σ(λ−mUU)−mImC

pmC

,
k(1− ε)β1U

mV (1 + q1C)
+

β2U

1 + q2C
= mI + pC.

Following the same procedure as described in [17], we can define the reproduction number for cellular
immunity as RC

1 , given by

RC
1 =

σI1

mC
.

When RC
1 > 1, the model (1) exhibits the infection equilibrium with cellular immunity, which is

referred to P2 = (U2, I2, V2, C2), where

U2 ∈

(

0,
λ

mU
−

mImC

σmU

)

, I2 =
mC

σ
, V2 =

k(1 − ε)mC

σmV
, C2 =

σ(λ−mUU2)−mImC

pmC
.

3. Lyapunov functions construction method

This section describes our method for constructing Lyapunov functions for a class of PDEs with and
without delays involving the regional fractional Laplacian operator.

Let m ∈ N
∗ and u = (u1, . . . , um) be a non-negative solution of the following ODE system:

u̇ = f(u), (4)

where f : Rm −→ R
m is a C1 function.

Let Ω be a bounded domain of Rn with smooth boundary ∂Ω, and D = diag(d1, . . . , dm) be the
diagonal matrix of diffusion coefficients di > 0 with i = 1, . . . ,m. Obviously, if u∗ is an equilibrium
point of (4), then u∗ is also a steady state of the following PDE system with regional fractional
Laplacian operator given by















∂u

∂t
= −D(−∆)sΩu+ f(u) in Ω× (0,+∞),

N 2−2su = 0 on ∂Ω× (0,+∞),
u(x, 0) = u0(x) in Ω.

(5)

If L(u) is a C1 function on a domain in R
m
+ , consider u(t) a solution of ODE system (4), then

dL(u(t))
dt

is calculated as follows
dL(u(t))

dt
= ∇L(u) · f(u). (6)

Let u(x, t) be a solution of PDE system (5). Construct another function defined from L as follows

L =

∫

Ω
L(u(x, t)) dx. (7)

Calculating dL
dt

, we get

dL

dt
=

∫

Ω
∇L(u) ·

(

−D(−∆)sΩu+ f(u)
)

dx
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=

∫

Ω
∇L(u) · f(u) dx−

∫

Ω
∇L(u) ·D(−∆)sΩu dx.

Hence,

dL

dt
=

∫

Ω
∇L(u) · f(u) dx−

m
∑

i=1

di

∫

Ω

∂L

∂ui
(u)(−∆)sΩui dx. (8)

According to Theorem 2.3 of [20] and Theorem 3.5 of [16], we have
∫

Ω

∂L

∂ui
(u)(−∆)sΩui dx =

C(n, s)

2

∫

Ω

∫

Ω

(

∂L
∂ui

(u(x, t))− ∂L
∂ui

(u(y, t))
)(

ui(x, t)− ui(y, t)
)

|x− y|n+2s
dx dy

−Bn,s

∫

∂Ω

∂L

∂ui
(u)N 2−2sui dσ, (9)

where Bn,s is a normalized constant. Since N 2−2su = 0 on ∂Ω, we deduce that

dL

dt
=

∫

Ω
∇L(u) · f(u) dx−

C(n, s)

2

m
∑

i=1

di E

(

ui,
∂L

∂ui
(u)

)

,

where

E

(

ui,
∂L

∂ui
(u)

)

=

∫

Ω

∫

Ω

(

∂L
∂ui

(u(x, t)) − ∂L
∂ui

(u(y, t))
)(

ui(x, t)− ui(y, t)
)

|x− y|n+2s
dx dy.

Therefore, we construct the function L that satisfied for all i = 1, . . . ,m, the following condition
∫

Ω

∫

Ω

(

∂L
∂ui

(u(x, t)) − ∂L
∂ui

(u(y, t))
)(

ui(x, t)− ui(y, t)
)

|x− y|n+2s
dx dy > 0, for all i = 1, . . . ,m, (C1)

which is equivalent to E
(

ui,
∂L
∂ui

(u)
)

> 0 for all i = 1, . . . ,m.
In the literature, many authors (see, for example [18]) constructed the Lyapunov functions of the

form

L(u) =

m
∑

i=1

ai

(

ui − u∗i −

∫ ui

u∗

i

gi(u
∗
i )

gi(t)
dt

)

, (10)

where gi is a non-negative and strictly increasing function on R+ and ai > 0. In this case,

E

(

ui,
∂L

∂ui
(u)

)

= aigi(u
∗
i )

∫

Ω

∫

Ω

(

gi((ui(x, t))− gi(ui(y, t))
)(

ui(x, t)− ui(y, t)
)

gi(ui(x, t)) gi(ui(y, t)) |x− y|n+2s
dx dy > 0.

When gi(z) = z, the expression of function L becomes

L(u) =

m
∑

i=1

ai

(

ui − u∗i − u∗i ln
ui

u∗i

)

, (11)

and

E

(

ui,
∂L

∂ui
(u)

)

= aiu
∗
i

∫

Ω

∫

Ω

(ui(x, t)− ui(y, t))
2

ui(x, t)ui(y, t)|x− y|n+2s
dx dy > 0.

In summary, we get the following fundamental results.

Theorem 1. Let L be a Lyapunov function for ODE system (4).
(i) If the function L satisfies the condition (C1), then the function L defined by (7) is a Lyapunov

function for PDE system (5) with regional fractional Laplacian operator.
(ii) If the function L is of the form (10) or (11), then L is a Lyapunov function for PDE system (5)

with regional fractional Laplacian operator.

Now, we consider the following delayed PDE system














∂u

∂t
= −D(−∆)sΩu+ f(u) + g(u, ut) in Ω× (0,+∞),

N 2−2su = 0 on ∂Ω × (0,+∞),
u(x, t) = u0(x, t) in Ω× [−τ, 0],

(12)

where τ > 0 and the function ut is such that ut(x, θ) = u(x, t+ θ) on Ω× [−τ, 0], g is a function of u
and ut.
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Therefore, along the positive solution of (12), dL
dt

becomes
dL

dt
=

∫

Ω
∇L(u) ·

(

−D(−∆)sΩu+ f(u) + g(u, ut)
)

dx

=

∫

Ω
∇L(u) · f(u) dx−

∫

Ω
∇L(u) ·D(−∆)sΩu dx+

∫

Ω
∇L(u) · g(u, ut) dx

=

∫

Ω
∇L(u) · f(u) dx−

C(n, s)

2

m
∑

i=1

di E

(

ui,
∂L

∂ui
(u)

)

+

∫

Ω
∇L(u) · g(u, ut) dx.

Like in [21], we can modify the integrand of the last term to show the negativeness of dL
dt

for system (12).
Our method extends that in [10]. In fact, consider the following classical reaction-diffusion system

with normal diffusion given by


















∂u

∂t
= D∆u+ f(u) in Ω× (0,+∞),

∂u

∂ν
= 0 on ∂Ω × (0,+∞),

u(x, 0) = u0(x) in Ω.

(13)

Let u(x, t) be a solution of (13). Denote

M =

∫

Ω
L(u(x, t)) dx, (14)

where L(u) is a Lyapunov function for the corresponding reaction system of (13). Then, we have
dM

dt
=

∫

Ω
∇L(u) · f(u) dx+

m
∑

i=1

di

∫

Ω

∂L

∂ui
(u)∆ui dx. (15)

It follows from Proposition 2.5 of [20] that

lim
s→1−

∫

Ω

∂L

∂ui
(u)(−∆)sΩui dx =

∫

Ω
∇ui∇

∂L

∂ui
(u) dx

= −

∫

Ω

∂L

∂ui
(u)∆ui dx+

∫

∂Ω

∂ui

∂ν

∂L

∂ui
(u) dσ,

Passing to the limit in (8) and using the above equalities, we obtain

lim
s→1−

dL

dt
=

∫

Ω
∇L(u) · f(u) dx−

m
∑

i=1

di

∫

Ω
∇ui∇

∂L

∂ui
(u) dx

=

∫

Ω
∇L(u) · f(u) dx+

m
∑

i=1

di

∫

Ω

∂L

∂ui
(u)∆ui dx−

m
∑

i=1

di

∫

∂Ω

∂ui

∂ν

∂L

∂ui
(u) dσ.

According to (15),
dM

dt
=

∫

Ω
∇L(u) · f(u) dx−

m
∑

i=1

di

∫

Ω
∇ui∇

∂L

∂ui
(u) dx+

m
∑

i=1

di

∫

∂Ω

∂ui

∂ν

∂L

∂ui
(u) dσ.

Since ∂u
∂ν

= 0 on ∂Ω, we deduce that

dM

dt
=

∫

Ω
∇L(u) · f(u) dx−

m
∑

i=1

di

∫

Ω
∇ui∇

∂L

∂ui
(u) dx. (16)

Thus, the condition (C1) reduces to
∫

Ω
∇ui · ∇

(

∂L

∂ui

)

dx > 0 for all i = 1, . . . ,m. (17)

Additionally, if the function L is of the form (11), then
∫

Ω
∇ui · ∇

(

∂L

∂ui

)

dx = aiu
∗
i

∫

Ω

|∇ui|
2

u2i
dx > 0 for all i = 1, . . . ,m.

Similarly, if L is of the form (10), then
∫

Ω
∇ui · ∇

(

∂L

∂ui

)

dx = aigi(u
∗
i )

∫

Ω
g′i(ui)

|∇ui|
2

gi(ui)2
dx > 0 for all i = 1, . . . ,m.
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Consequently, we have the following corollary.

Corollary 1. If the function L satisfies the condition (17), then the function M defined by (14) is a
Lyapunov function for the classical reaction-diffusion system (13) with normal diffusion.

4. Global stability of the proposed model

The purpose of this section is to examine the global stability of three equilibria established by the
system presented in equations (1). We will achieve this by using the method described in the preceding
section.
Theorem 2. If R0 6 1, then the infection-free equilibrium P0 of model (1) is globally asymptotically
stable.

Proof. Consider the form of the notation for u and the reaction function F (u) as follows

u =









U

I

V

C









and F (u) =











λ−mUU − β1UV
1+q1C

− β2UI
1+q2C

β1UV
1+q1C

+ β2UI
1+q2C

−mII − pIC

k(1− ε)I −mV V

σIC −mCC











, (18)

let the function Ψ(x) := x− lnx− 1 for x > 0 and the following functional

L0(u) = U0Ψ

(

U

U0

)

+ I +
β1U0

mV
V +

p

σ
C,

L0(u) =

∫

Ω
L0(u(x, t)) dx.

Obviously, L0(U, I, V,C) > 0 for U, I, V,C > 0 and L0(P0) = 0. By using the method described in
section 3, we get

dL0(u)

dt
=

∫

Ω
∇L0(u) · f(u) dx−

C(n, s)

2

4
∑

i=1

di E

(

ui,
∂L0

∂ui
(u)

)

,

for di the diffusion coefficients and ui the u components.
We can view the negativeness of ∇L0(u) · f(u) from [17] such as

∇L0(u) · f(u) =
dL0

dt
= −

mU

U
(U − U0)

2 +mII

(

k(1− ε)β1U0

mImV
+

β2U0

mI(1 + q2C)
− 1

)

−
q1β1U0

1 + q1C
V C −

pmC

σ
C

6 −
mU

U
(U − U0)

2 +mII(R0 − 1)−
pmC

σ
C.

Then ∇L0(u) · f(u) 6 0 when R0 6 1. In addition, the functional L0 satisfies the following conditions
of the Theorem 1,

E

(

U,
∂L0

∂U
(u)

)

= U0

∫

Ω

∫

Ω

(U(x, t)− U(y, t))2

U(x, t)U(y, t)|x − y|n+2s
dx dy > 0,

E

(

I,
∂L0

∂I
(u)

)

= 0,

E

(

V,
∂L0

∂V
(u)

)

= 0,

E

(

C,
∂L0

∂C
(u)

)

= 0.

If R0 6 1, we can conclude that dL0

dt
6 0. Moreover, the equality holds if and only if U = U0, I = 0,

V = 0, and C = 0. We conclude that P0 is globally asymptotically stable when R0 6 1, by applying
LaSalle’s invariance principle. �

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 319–332 (2024)



326 El Hassani A., Bettioui B., Hattaf K., Achtaich N.

We will now analyze the asymptotic stability of two infection equilibria P1 and P2. For this analysis,
we will assume that R0 > 1 and the following additional hypothesis,

q1(C − Ci)

(

1 + q1C

1 + q1Ci

−
V

Vi

)

6 0,

q2(C − Ci)

(

1 + q2C

1 + q2Ci
−

I

Ii

)

6 0, (H)

where Ii, Vi and Ci are infected pulmonary epithelial cell, virus and CTL cell components of the
infection equilibrium Pi for i = 1, 2.

Theorem 3.

(i) If (H) holds for the infection equilibrium P1 without cellular immunity, then P1 is globally
asymptotically stable if RC

1 6 1 < R0.
(ii) If (H) holds for the infection equilibrium P2 with cellular immunity, then P2 is globally asymp-

totically stable if RC
1 > 1.

Proof. For (i), let us consider the following functionals

L1(u) = U1Ψ

(

U

U1

)

+ I1Ψ

(

I

I1

)

+
β1U1V1

k(1− ε)I1
V1Ψ

(

V

V1

)

+
p

σ
C,

L1(u) =

∫

Ω
L1(u(x, t)) dx.

According to [17],

∇L1(u) · f(u) =
dL1

dt
= −

mU

U
(U − U1)

2 +
pmC

σ

(

RC
1 − 1

)

C

+ β1U1V1

(

−1−
V

V1
+

V

(1 + q1C)V1
+ (1 + q1C)

)

+ β2U1I1

(

−1−
I

I1
+

I

(1 + q2C)I1
+ (1 + q2C)

)

+ β1U1V1

(

4−
U1

U
−

IV1

I1V
−

UV I1

(1 + q1C)U1V1I
− (1 + q1C)

)

+ β2U1I1

(

3−
U1

U
−

U

(1 + q2C)U1
− (1 + q2C)

)

.

From (H),

−1−
V

Vi
+

(1 + q1Ci)V

(1 + q1C)Vi
+

1 + qiC

1 + q1Ci
=

q1(C − Ci)

1 + q1C

(

1 + q1C

1 + q1Ci
−

V

Vi

)

6 0,

−1−
1

Ii
+

(1 + q2Ci)I

(1 + q2C)Ii
+

1 + q2C

1 + q2Ci
=

q2(C − Ci)

1 + q2C

(

1 + q2C

1 + q2Ci
−

I

Ii

)

6 0.

Using the property that the arithmetic mean (AM) is greater than or equal to the geometric mean
(GM), we can derive the following inequalities

4−
U1

U
−

IV1

I1V
−

UV I1

(1 + q1C)U1V1I
− (1 + q1C) 6 0

and

3−
U1

U
−

U

(1 + q2C)U1
− (1 + q2C) 6 0.

Then ∇L1(u) · f(u) 6 0 when RC
1 6 1. Clearly, the functional L0 satisfies the following conditions of

Theorem 1 that are

E

(

U,
∂L1

∂U
(u)

)

= U1

∫

Ω

∫

Ω

(U(x, t)− U(y, t))2

U(x, t)U(y, t)|x − y|n+2s
dx dy > 0,

E

(

I,
∂L1

∂I
(u)

)

= I1

∫

Ω

∫

Ω

(I(x, t)− I(y, t))2

I(x, t)I(y, t)|x − y|n+2s
dx dy > 0,
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E

(

V,
∂L1

∂V
(u)

)

=
β1U1V1

k(1 − ε)I1
V1

∫

Ω

∫

Ω

(V (x, t)− V (y, t))2

V (x, t)V (y, t)|x− y|n+2s
dx dy > 0,

E

(

C,
∂L1

∂C
(u)

)

= 0.

If RC
1 6 1, then dL1

dt
6 0. Hence, P1 is globally asymptotically stable.

For (ii), we consider the Lyapunov function

L2(u) =

∫

Ω
L2(u(x, t)) dx,

where

L2(u) = U2Ψ

(

U

U2

)

+ I2Ψ

(

I

I2

)

+
β1U2V2

(1 + q1C2)k(1 − ε)I2
V2Ψ

(

V

V2

)

+
p

σ
C2Ψ

(

C

C2

)

.

The computation of ∇L2(u) · f(u) gives

∇L2(u) · f(u) =
dL2

dt

= −
mU

U
(U − U2)

2 +
β1U2V2

1 + q1C2

(

−1−
V

V2
+

(1 + q1C2)V

(1 + q1C)V2
+

1 + q1C

1 + q1C2

)

+
β2U2I2

1 + q2C2

(

−1−
I

I2
+

(1 + q2C2)I

(1 + q2C)I2
+

1 + q2C

1 + q2C2

)

+
β1U2V2

1 + q1C2

(

4−
U2

U
−

IV2

I2V
−

(1 + q1C2)UV I2

(1 + q1C)U2V2I
−

1 + q1C

1 + q1C2

)

+
β2U2I2

1 + q2C2

(

3−
U2

U
−

(1 + q2C2)U

(1 + q2C)U2
−

1 + q2C

1 + q2C2

)

.

Since AM is greater than or equal to GM, we have

4−
U2

U
−

IV2

I2V
−

(1 + q1C2)UV I2

(1 + q1C)U2V2I
−

1 + q1C

1 + q1C2
6 0,

3−
U2

U
−

(1 + q2C2)U

(1 + q2C)U2
−

1 + q2C

1 + q2C2
6 0.

Then ∇L2(u) · f(u) < 0 when RC
2 > 1.

Moreover, the functional L2 satisfies the conditions of Theorem 1:

E

(

U,
∂L2

∂U
(u)

)

= U2

∫

Ω

∫

Ω

(U(x, t)− U(y, t))2

U(x, t)U(y, t)|x − y|n+2s
dx dy > 0,

E

(

I,
∂L2

∂I
(u)

)

= I2

∫

Ω

∫

Ω

(I(x, t)− I(y, t))2

I(x, t)I(y, t)|x − y|n+2s
dx dy > 0,

E

(

V,
∂L2

∂V
(u)

)

=
β1U2V2

(1 + q1C2)k(1− ε)I2
V2

∫

Ω

∫

Ω

(V (x, t)− V (y, t))2

V (x, t)V (y, t)|x− y|n+2s
dx dy > 0,

E

(

C,
∂L2

∂C
(u)

)

=
p

σ
C2

∫

Ω

∫

Ω

(C(x, t)− C(y, t))2

C(x, t)C(y, t)|x− y|n+2s
dx dy > 0.

If RC
2 > 1, then we have dL2

dt
6 0, which implies that P1 is globally asymptotically stable. �

5. Numerical simulations

In this section, we first propose a numerical scheme to approximate the solutions of our PDE model (1).
According to [22], the fractional Laplacian given in (2) can be approximated in one dimension, for

u = {uj}j∈Z a function defined on the uniform grid Ωh = {jh|j ∈ Z} ∩ Ω with spacing h > 0, by the
following discrete operator

(−∆)sΩuj =
+∞
∑

k=−∞

(uj − uj−k)wk =
+∞
∑

k=1

(−uj−k + 2uj − uj+k)wk, (19)
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where {wk}k∈Z are the positive weights satisfying
∑

k∈Zwk = 1. As in [23], we choose

wk = C(1, s)|k|−2s−1 (k 6= 0),

with C(1, s) the normalization constant defined in (3). It is natural to require that wk = w−k since
the fractional Laplacian is symmetric. When the explicit Euler scheme used in the discretization of
the model (1) is

un+1
j − unj

∆t
= D(−∆h)

sunj + F (unj ),

at time tn+1 = (n+ 1)∆t the scheme can be also written as

un+1
j = (1 + ∆tw0)u

n
j +D

∑

k 6=0

∆t(unj − unj−k)wk +∆tF (unj ),

= (1 + ∆tw0)u
n
j +D

+∞
∑

k=1

∆t(−unj+k + 2unj − unj−k)wk +∆tF (unj ),

where F = (F1, F2, F3, F4) is the reaction component given in (18), the weight w0 can be arbitrary,
because it does not enter into (19).

As a result to approximate the model (1), the following recursive relations take place

Un+1
j = (1 + ∆t w0)U

n
j + dU

N
∑

k=1

∆t (−Un
j+k + 2Un

j − Un
j−k)wk +∆t F1(u

n
j ),

In+1
j = (1 + ∆t w0) I

n
j + dI

N
∑

k=1

∆t (−Inj+k + 2Inj − Inj−k)wk +∆t F2(u
n
j ),

V n+1
j = (1 + ∆t w0)V

n
j + dV

N
∑

k=1

∆t (−V n
j+k + 2V n

j − V n
j−k)wk +∆t F3(u

n
j ),

Cn+1
j = (1 + ∆t w0)C

n
j + dC

N
∑

k=1

∆t (−Cn
j+k + 2Cn

j −Cn
j−k)wk +∆t F1(u

n
j ).

The parameters of the SARS-CoV-2 model are typically determined through biological calculations
or estimates, taking into account morphometric data such as the numbers of various pulmonary cells
and lung volume. In this study, we analyze the numerical dynamics of model (1) using different
parameter values, as classified in [17], presented in Table 1.

Table 1. Parameter values for the SARS-CoV-2 model.

Parameter Range value

λ 57.757 − 1.2× 10
4 cells mL−1 day −1

mU 10
−3day−1

β1 0− 1 mL virion −1 day −1

β2 0− 1 mL cell−1 day −1

mI 0.088 − 0.58 day−1

k 88− 580 virions cell −1 day−1

mV 2.4464 − 15.1232 day−1

σ 0− 1 mL cell−1 day −1

mC 0.05− 1 mL cell−1 day−1

p 0.05− 1 mL cell−1 day−1

q1 0− 1 mL cell−1

q2 0− 1 mL cell−1

Based on the given information, Table 1 pro-
vides the values for the parameters used: λ =
500, mU = 0.001, β1 = 1.12 × 10−7, β2 =
1.1 × 10−7, q1 = 0.3, q2 = 0.6, mI = 0.56,
p = 0.06, mV = 10, and mC = 0.85. The re-
maining parameters σ and k are considered as
free variables.

Infection-free equilibrium P0: To ana-
lyze the dynamics of P0, we investigate the
case where R0 = 0.9782 6 1. By selecting
σ = 0.05 and k = 88, it can be shown that
P0(5×105, 0, 0, 0) is globally asymptotically sta-
ble. This theoretical result is visually illustrated

in Figure 1, which depicts the convergence of the solutions of model (1) towards P0.
Infection equilibrium without cellular immunity P1: Considering σ = 1.1×10−3 and k = 230,

we find that R0 = 2.3982 > 1 and RC
1 = 0.6737 6 1. Figure 2 illustrates that the trajectories

of model (1) converge towards the infection equilibrium P1(2.0850 × 105, 520.5563, 1.1973 × 104, 0).
This confirms the global asymptotic stability of P1 and validates the analytical result obtained in
Theorem 3(i).
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Fig. 1. Dynamics of system (1) at P0.
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Fig. 2. Dynamics of system (1) at P1.
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Fig. 3. Dynamics of system (1) at P2.

Infection equilibrium with cellular immunity P2: For σ = 4.5 × 10−3 and k = 230, we have
R0 = 2.3982 > 1 and RC

1 = 2.7559 > 1. In Figure 3, we observe that the trajectories of model (1)
converge to the infection equilibrium with cellular immunity P2(3.7506 × 105, 188.2088, 4.3292 ×
103, 1.6977). This illustrates the results of the global asymptotic stability of P2 given in Theorem 3(ii).

6. Conclusion

In this work, we have proposed a SARS-CoV-2 infection model with diffusion and antiviral treatment.
The proposed model incorporates both modes of transmission (virus-to-cell and cell-to-cell), the lytic
and nonlytic immune responses. The anomalous diffusion into the model was described by the regional
fractional Laplacian operator. We first established the equilibria and the threshold parameters of the
model. The global stability of such equilibria has been investigated by means of a new method con-
structing Lyapunov functions for a class of PDEs with and without delay involving regional fractional
Laplacian operator. In addition, the new method extended the case of the classical reaction-diffusion
equations with normal diffusion presented in [10].

[1] Elaiw A. M., Hobiny A. D., Al Agha A. D. Global dynamics of SARS-CoV-2/cancer model with immune
responses. Applied Mathematics and Computation. 408, 126364 (2021).

[2] Kevrekidis P. G., Cuevas-Maraver J., Drossinos Y., Rapti Z., Kevrekidis G. A. Reaction-diffusion spatial
modeling of COVID-19: Greece and Andalusia as case examples. Physical Review E. 104 (2), 024412
(2021).

[3] Elaiw A. M., Shflot A. S., Hobiny A. D., Aly S. A. Global Dynamics of an HTLV-I and SARS-CoV-2 Co-
Infection Model with Diffusion. Mathematics. 11 (3), 688 (2023).

[4] Bucur C., Valdinoci E. Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica
Italiana. Springer (2016).

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 319–332 (2024)



Global dynamics of a diffusive SARS-CoV-2 model with antiviral treatment and fractional . . . 331

[5] Somathilake L. W., Burrage K. A space-fractional-reaction-diffusion model for pattern formation in coral
reefs. Cogent Mathematics & Statistics. 5 (1), 1426524 (2018).

[6] Nezza E. D., Palatucci G., Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des
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Глобальна динамiка дифузiйної моделi SARS-CoV-2 з
противiрусним лiкуванням i дробовим оператором Лапласа

Ель Хассанi А.1, Беттiуї Б.1,2, Хаттаф К.1,2, Ахтаїч Н.1

1Лабораторiя аналiзу, моделювання та симулювання (LAMS),
Факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки,

п.с. 7955, Сiдi Отман, Касабланка, Марокко
2Регiональний центр освiти i пiдготовки професiй (CRMEF),

20340 Дерб Галеф, Касабланка, Марокко

У цiй статтi пропонується та дослiджується глобальна динамiка моделi iнфекцiї
SARS-CoV-2 iз дифузним та противiрусним лiкуванням. Запропонована модель вра-
ховує два шляхи передачi (вiд вiрусу до клiтини та вiд клiтини до клiтини), лiтичну
та нелiтичну iмуннi вiдповiдi. Дифузiя в модель формулюється регiональним дро-
бовим оператором Лапласа. Крiм того, глобальна асимптотична стiйкiсть рiвноваги
строго встановлена за допомогою нового запропонованого методу побудови функ-
цiй Ляпунова для класу рiвнянь в частинних похiдних (PDE) з регiональним дробо-
вим оператором Лапласа. Запропонований метод застосовано до класичних рiвнянь
“реакцiї–дифузiї” з нормальною дифузiєю.

Ключовi слова: SARS-CoV-2; COVID-19; регiональний дробовий оператор Лапла-
са; дифузiя; функцiї Ляпунова; глобальна стiйкiсть.
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