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In this paper, we propose and investigate the global dynamics of a SARS-CoV-2 infection
model with diffusion and antiviral treatment. The proposed model takes into account the
two modes of transmission (virus-to-cell and cell-to-cell), the lytic and nonlytic immune
responses. The diffusion into the model is formulated by the regional fractional Lapla-
cian operator. Furthermore, the global asymptotic stability of equilibria is rigorously
established by means of a new proposed method constructing Lyapunov functions for a
class of partial differential equations (PDEs) with regional fractional Laplacian operator.
The proposed method is applied to the classical reaction-diffusion equations with normal
diffusion.
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1. Introduction

The COVID-19 pandemic has swept across the globe, affecting millions of people and challenging
healthcare systems worldwide. As of the most recent report from the World Health Organization
(WHO), there have been over 400 million confirmed cases and over 5 million deaths worldwide. The
disease is caused by the novel coronavirus SARS-CoV-2, which primarily spreads through respiratory
droplets and close contact with infected individuals. In addition to fever, cough, and difficulty breath-
ing, patients with COVID-19 may experience a wide range of symptoms, including loss of taste and
smell, fatigue, and gastrointestinal issues. Understanding the transmission dynamics and clinical fea-
tures of the disease is crucial for controlling its spread and improving patient outcomes. Mathematical
modeling has been used extensively to study the spread of the SARS-CoV-2 virus and to inform pub-
lic health policies aimed at mitigating its impact. One common approach to modeling the spread of
infectious diseases is to use partial differential equations (PDEs) with diffusion terms. However, the
diffusion term in these equations is typically assumed to be anomalous, meaning that the spread is not
regular in space and time. Many recent studies report the normal spacial diffusion of SARS-CoV-2
virus. For instance Elaiw et al. [1]| designed a reaction-diffusion model to depict the dynamic processes
of SARS-CoV-2 infection inside cancer patients. Kevrekidis et al. [2] developed a spatially distributed
version of a compartmental epidemiological model in the form of reaction-diffusion equations to ex-
amine the spatial modeling of the outbreak of COVID-19 in Andalusia (Spain) and the mainland of
Greece. Elaiw et al. [3] constructed a model that characterizes the in-host dynamics of HTLV-I and
SARS-CoV-2 co-infection.

Recently, PDEs involving fractional Laplacian operator are used to describe the dynamics of systems
with anomalous diffusion. This type of operator has received much attention in both pure and applied
mathematics. Bucur and Valdinoci [4] observed that some processes occur in nature such as the natural
selection can be modeled by the nonlocal fractional Laplacian operator because this natural phenomena
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may favour some kind of nonlocal diffusion and that a predator can decide to use a nonlocal dispersive
strategy to hunt its preys more efficiently. In [5], the authors proposed a mathematical PDE model
with Laplacian operator for pattern formation in coral reefs and they derived the conditions for Turing
bifurcation through linear stability analysis of the proposed PDE model. Nezza et al. [6] dealt with
the fractional Sobolev spaces and they analyzed the relations among some of their possible definitions
and their role in the trace theory. Vazquez [7] described two models of flow in porous media including
nonlocal diffusion effects.

The fractional Laplacian is a nonlocal operator and it allows to describe the motions of random
particles in the entire set R™. However, these types of motions can be modeled by the regional fractional
Laplacian operator when particles move through a region €2 of R” which are not allowed to jump outside
Q but are either reflected back into €2 or killed when they reach the boundary 92. The last operator
was introduced by Bogdan et al. [8] by limiting the integral in the fractional Laplacian in the region
Q. A comparative study about the properties of the fractional Laplacian, regional fractional Laplacian
and other nonlocal diffusion operators was carefully investigated in [9].

Most nonlinear systems of PDEs that describe spatiotemporal dynamics of real phenomena in
various fields of science and engineering are complex and cannot be solved analytically. It well be more
suitable to study the qualitative properties of solutions such as global stability. Accordingly, Hattaf
and Yousfi [10] studied the global stability of some reaction-diffusion equations in biology by developing
an efficient method for the construction of Lyapunov functions of a class of PDEs with and without
delays. Such Lyapunov functions for PDEs are obtained from those for ordinary differential equations
(ODEs). Furthermore, the method has been applied by many researchers. For instance, Zhang et
al. [11] analyzed the global asymptotic stability of a chemostat model with maintenance energy by
constructing a Lyapunov function inspired by the method of [10]. In [12], the authors used the same
method to prove the global stability of a nonlocal and time-delayed reaction-diffusion epidemic model.
Elaiw and Al Agha [13| also used the method for constructing appropriate Lyapunov functions for
a reaction-diffusion model that describes the within-host dynamics of Malaria infection in presence
of adaptive immunity. In addition, the method is recently extended in [14] for fractional differential
equations (FDEs) with normal diffusion, and in [15] for PDEs with fractional Laplacian operator.

In the literature, most mathematical models formulated by PDEs to describe the diffusion of viral
infections like SARS-CoV-2 used normal Laplacian operator. In this paper, we propose a mathematical
model for SARS-CoV-2 infection with regional fractional Laplacian operator. To do this, the next
section is devoted to SARS-CoV-2 model formulation and their equilibria. A new efficient method for
constructing Lyapunov function for a class of PDEs with and without delay is presented in Section 3.
Section 4 is devoted to the global stability of the proposed model by mean of the new method. Section 5
establishes numerical simulations. Finally, Section 6 concludes the paper.

2. SARS-CoV-2 model formulation and equilibria

In this section, we propose a mathematical model for SARS-CoV-2 infection with fractional diffusion,
antiviral treatment, two modes of transmission, lytic and nonlytic immune response. This model is
formulated by the following nonlinear system of PDEs

ou s BrU(x, t)V (x,t)  PoU(x,t)I(z,t)

B = —dy(=A){U (z,t) + A —myU(x,t) — T+ 00w 1tal@D

or s BrU(xz, t)V (x,t)  PoU(x,t)I(z,t)

E = _dl(_A)QI($7t)+ 1+Q1C(l’,t) 1+q20(3:,t) _mll($7t) —p[(l’,t)C(:E,t), (1)
%—‘: = —dy(—A){V(x,t) + k(1 —e)I(z,t) — myV(z,t),

%_f = —de(—ARC(@,t) + ol (2, t)C(,t) — meClz, t),

where the concentrations of uninfected pulmonary epithelial cells, infected pulmonary epithelial cells,
free virus particles, and CTL cells are denoted by U(x,t), I(z,t), V(x,t), and C(z,t), respectively, at
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position z and time ¢t. The generation rate of uninfected pulmonary epithelial cells is given by A, and
their death rate is denoted by myU. Infection can occur via free virus particles at rate 81UV, which is
inhibited by nonlytic immune response at rate 1 + ¢ C, or via direct contact with infected pulmonary
epithelial cells at rate SoU[, which is also inhibited by nonlytic immune response at rate 1 + ¢C.
Infected pulmonary epithelial cells die at rate mjl and can be targeted by lytic immune responses
at rate pIC. The remaining parameters also have specific biological interpretations, k denotes the
production rate of virus from infected pulmonary epithelial cells, my represents the clearance rate of
virus, o is the immune responsiveness rate, and m¢ reflects the death rate of CTL cells. Additionally,
non-negative constants dys, dy, dy, and do are the coefficients of diffusion. Finally, the parameter e
represents the effectiveness of antiviral treatment that blocks the production of viral particles. It takes
values between 0 and 1, where a higher value indicates greater effectiveness.

In the field of biology, the diffusion of virus and cells is known to exhibit an abnormal behaviour,
which can be mathematically described by the regional fractional Laplacian operator (—A)g,. This
operator is presented in [16] by

(—A)du(z) = C(n,s) PV/ ulw) — uly) dy

’ Q |z —y|t
. u(z) — u(y) .
=C(n,s) lim —————dy,
=0T J{yeQ,|z—y|>e} ‘x - y‘n+28
where the notation PV indicates principal value and C'(n, s) is a normalization constant given by
S n

5421“(54-5)7 (3)
m2[(1 —s)
with s € (0,1), T' is the gamma function. The operator (—A)g, describes the random motion of a
particle jumping from a point x € € to another y € Q with intensity proportional to |z — y|~"72%.
Furthermore, it should be noted that particles cannot escape from €2 and instead are either reflected
back inside or eliminated upon reaching the boundary 0€). Given this constraint, we can now examine
the problem stated in (1) with the following generalized Neumann boundary conditions

N’2—28U _ NZ—ZSI _ N’2—28V — N’2—2SC _ 0’ on 00 x (0’ —|—OO),
where N2725y denotes the fractional normal derivative of u in direction of the outer normal vector

defined as in [16] by

C(n,s) =

225 _du(z +n(z)t)
N7tz = =l
n(z) is the inner normal vector of 02 at the point z € 9. In this paper, the initial conditions for
model (1) are taken as follows
U(x,0) >0, I(x,00>0, V(x,0)>0, C(x,0)>0, z¢cQ.

It is important to note that model (1) improves and generalizes the ODE model proposed by Hattaf
and Yousfi in [17] by considering the diffusion and antiviral treatment.

The system (1) invariably possesses an infection-free equilibrium, denoted as Py(Uy, 0,0,0), where
Up = miU, indicating a healthy state. As a result, we can define the basic reproduction number for our
PDE model in the following way

A(k(1 = &)B1 + my o)

Ro = .
myumpmy

t2—287

As per the biological and referenced [18, 19| perspectives, Ry can be separated into two constituent
parts, namely Rg1 and Rgo, where the basic reproduction number of the virus-to-cell infection mode

is represented by Rg1, which is calculated as % On the other hand, the basic reproduction

number of the second direct cell-to-cell mode is represented by Rgo, which is calculated as m)‘ﬁ 2. The
remaining steady states of system (1) that are spatially uniform can be described by the following

system

81UV B2UI

0=X— U — — ,
mu 1+¢C 1+ ¢C
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0= 51UV BUT
1+q@C 14 ¢C
0= ]{7(1 - 6)[ —myV,
0=0cIC — mcc.
Based on the last equation, we can deduce that either C'= 0 or I = “¢. Hence, we will consider two

different cases. In the first case, where there is no immune response (C' = 0), the following expressions
are obtained

—myl —pIC,

UlZL, [1:M7 Vi = )
mURQ m[RQ m]vaQ

Thus, if Ry > 1, the point P, (U1, I1,V1,0) equilibrium of model (1) is called the infection equilibrium
without cellular immunity:.

In the case of presence of immune response, system (1) has another biological steady state that

verify the equalities in flow
Fome oy k(1 —¢e)me O oA —=myU) —mrme k(1 —¢)5U BoU

o’ omy pme T omy(1+@C) 14 ¢C

Following the same procedure as described in [17], we can define the reproduction number for cellular
immunity as R?, given by

k(1 —e)A(Ro — 1)

=my + pC.

ol
A

me
When 'R? > 1, the model (1) exhibits the infection equilibrium with cellular immunity, which is
referred to Py = (Us, I2, Vo, Cy), where

1— _ _
e (0.2 - mme) p_me ke g, o0 mulh) —mime,
my omy

)

o omy pme

3. Lyapunov functions construction method

This section describes our method for constructing Lyapunov functions for a class of PDEs with and
without delays involving the regional fractional Laplacian operator.

Let m € N* and u = (uy,...,u) be a non-negative solution of the following ODE system:

i = f(u), (4)
where f: R™ — R™ is a C' function.

Let Q be a bounded domain of R"™ with smooth boundary 02, and D = diag(ds,...,d,) be the
diagonal matrix of diffusion coefficients d; > 0 with ¢ = 1,...,m. Obviously, if ©* is an equilibrium
point of (4), then u* is also a steady state of the following PDE system with regional fractional
Laplacian operator given by

0
S5 = ~D(=A)ju+ f(w) in Qx (0,400),
N?2725y =0 on 99 x (0,+00), (5)
u(z,0) =wup(z) in Q.

If L(u) is a C! function on a domain in R7, consider u(t) a solution of ODE system (4), then

% is calculated as follows

dL(u(t))
S VL) (). (6)

Let u(z,t) be a solution of PDE system (5). Construct another function defined from L as follows
z:/Lm@nmx (7
Q

Calculating %, we get
e B
Q
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/VL( d:n—/VL —A)judz.
Hence,
_ /Q VI(u)- Zd 81% (—A)oyu; d. 8)
According to Theorem 2.3 of [20] and Theorem 3.5 of [16], we have
oL
I == (u(z, b)) m , ui(x,t) —u;(y,t
9 ()(—A)auid:czc(Z’S)// (S5 (u(, 1)) — $E(u(y, 1)) (wi(x, t) — ui(y, 1))

u
o Ou; |z — y|nt2s

dx dy

oL
_ an 2— 28
o SR N s, )

where By, 5 is a normalized constant. Since N 2725y = 0 on OS2, we deduce that

ac _ /QVL(U)-f(U)dx_ %édﬁ@i’g—i(u)) :

where
u(z,t)) , ui(x,t) —u;(y,t
¢ uz, // g ( G (u(y, 1)) (wi(w, ) — ui(y, t)) dvdy.
. ‘.Z' _ y‘n+28
Therefore, we construct the functlon L that satisfied for all ¢ = 1,...,m, the following condition
(F% (u(z, 1) — S (u(y, 1)) (wi(z, ) — uily, 1))
// . d =5 drdy >0, forall i=1,...,m, (Ch)
aJa |z —y["t=s
which is equivalent to 5(u2, gL( )) >0foralli=1,...,m

In the literature, many authors (see, for example [18]) constructed the Lyapunov functions of the

form m
L(u) = Zai <ul —u; — / 9:(u;) dt) (10)

i=1 ug ailt)
where g; is a non-negative and strictly increasing function on Ry and a; > 0. In this case,

5(%‘, oL ) — g // g9i((uiz,t)) — gi(ui(y, 1)) (wiz, t) — ui(y, 1)) d dy > 0

o0, g0, 0)) g5 i, 1) [ — 7
When g;(z) = z, the expression of function L becomes

L(u):iai <ul wr— ln%), (11)

— 1

oL wi(2,t) — ui(y,t))?
(3] d d 2 .
5<u 3' > //uzxtuzy, e — ylrrzs Y 0

In summary, we get the following fundamental results.

and

Theorem 1. Let L be a Lyapunov function for ODE system (4).
(i) If the function L satisfies the condition (C), then the function £ defined by (7) is a Lyapunov
function for PDE system (5) with regional fractional Laplacian operator.
(ii) If the function L is of the form (10) or (11), then L is a Lyapunov function for PDE system (5)
with regional fractional Laplacian operator.
Now, we consider the following delayed PDE system
ou .
E = _D(_A)flu + f(’LL) + g(u7ut) n Qx (07 +OO)7
N22y=0 on 09 x (0,400),
uw(z,t) =up(z,t) in Qx[—7,0],
where 7 > 0 and the function u; is such that us(z,0) = u(x,t + 60) on Q x [—7,0], g is a function of u
and ;.

(12)
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Therefore, along the positive solution of (12), % becomes

%:/VL(U)-(—D(—A)Eu%—f(@+9(U,Ut))d$
Q

:/VL(u dx—/VL )Qudx+/VL - g(u, up) da
/VL C(n,9) Zd 5<u— ) /VL g(u, up) de.

Like in [21], we can modify the 1ntegrand of the last term to show the negativeness of for system (12).
Our method extends that in [10]. In fact, consider the following classical reactlon diffusion system
with normal diffusion given by

%:DAu—i—f(u) in Qx(0,4+00),

% =0 on 0N x (0,+00), (13)
u(z,0) =up(x) in Q.

Let u(z,t) be a solution of (13). Denote

M = / L(u(z,t)) dz, (14)
Q
where L(u) is a Lyapunov function for the Correspondlng reactlon system of (13). Then, we have
dmM
o= /QVL(u dx—i—Zd / u. w)Au; dz. (15)
It follows from Proposition 2.5 of [20] that
L
81_1)111[1 / o, A)du; dx = /QVUZVS—UZ(u) dx
oL Ou; OL
=— Au; d do,
P (u)Au; dx + o O o (u) do
Passing to the hmlt in (8) and using the above equalities, We obtaln
lim — VL(u u) dx — di | Vu;
I G / A
Ou; OL
L(u u)d d; )Au,; d d; . do.
/QV :L"+Z /Gul u; dr — Z mayam(u) o
According to (15),
= L(u u)dx — d; i u)d d;  — do.
T QV x Z /Vu w—i—Z: - ayam(u) o

Since % =0 on 91, we deduce that

dM
= = L(u u) dz — d i 16
i =, Vi xZ/W . (16)
Thus, the condition (C;) reduces to
/Vu, <8u2>dx 0 forall i=1,...,m. (17)
Additionally, if the function L is of the form (11), then
2
/Vuz < > |V Z| x>0 forall i=1,...,m.

Similarly, if L is of the form (10), then

/ Vu; - ( >d:n a-g-(u*)/g'(u-) Ve dr >0 forall i=1 m
3 LI\ Q 7 Zgi(ui)z = geeey .
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Consequently, we have the following corollary.

Corollary 1. If the function L satisfies the condition (17), then the function M defined by (14) is a
Lyapunov function for the classical reaction-diffusion system (13) with normal diffusion.

4. Global stability of the proposed model

The purpose of this section is to examine the global stability of three equilibria established by the
system presented in equations (1). We will achieve this by using the method described in the preceding
section.

Theorem 2. IfRy < 1, then the infection-free equilibrium Py of model (1) is globally asymptotically
stable.

Proof. Consider the form of the notation for u and the reaction function F'(u) as follows

U )\—mUU— BUV — BUI

BUv | gl BC el

1 2

u = ! and F(u)= | HaC + 11¢2C mpl — pIC 7 (18)
V k(l — E)I — mvv
C O'IC — mCC

let the function ¥(z) := 2z —Inxz — 1 for 2 > 0 and the following functional

Lo(u) = UO\I/<U> 14 Dy Pe
UO my g

Lo(u) = / Lo(u(z, t)) dz.
Q
Obviously, Lo(U,I1,V,C) > 0 for U,I,V,C > 0 and Lo(FPy) = 0. By using the method described in

section 3, we get

4
dﬁdot(u) = /QVLO(u) - f(u) dx — @ Zz:;d,f <ui, g—i?@)) ,

for d; the diffusion coefficients and u; the u components.
We can view the negativeness of VLy(u) - f(u) from [17] such as

dLy my 9 k(1 —¢)p1Uy B2Uo
L . =—=——(U - I -1
VLo(u) - f(u) dt U (U= Uo)" +m < mrmy * my(1+ ¢C)
7151 Uo pmc
— vo — 22¢
1+q¢:C ¢ o ¢
< —%(U — Ug)? +myI(Ro — 1) — @c
Then VL(u) - f(u) < 0 when R < 1. In addition, the functional Lg satlsﬁes the following conditions
of the Theorem 1,
8L0 (U(x U( t))2
i >
(0 3) s [ v
(1.5 w) <o
L
5<V, %(u)) =0,

If Ry < 1, we can conclude that ddﬁto < 0. Moreover, the equality holds if and only if U = Uy, I = 0,
V =0, and C = 0. We conclude that Py is globally asymptotically stable when Ry < 1, by applying
LaSalle’s invariance principle. ]
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We will now analyze the asymptotic stability of two infection equilibria P; and P». For this analysis,
we will assume that Ry > 1 and the following additional hypothesis,

14+ q¢:C \%
<
0 (C - C><1+q10 V> 0,

0l - C) ({20 - 1) <o (1)

1+ QQC Iz
where I;, V; and C; are infected pulmonary epithelial cell, virus and CTL cell components of the
infection equilibrium P; for i = 1, 2.
Theorem 3.
(i) If (H) holds for the infection equilibrium P; without cellular immunity, then P is globally
asymptotically stable if R{ < 1 < Ry.
(ii) If (H) holds for the infection equilibrium P, with cellular immunity, then P; is globally asymp-
totically stable if RY > 1.

Proof. For (i), let us consider the following functionals

U I fiUVi
e =vnw () e ) 25

nglﬁmm@m$

V p
\VJ
Vi <V1> + = C,

According to [17],

dL m m
VL1(U)’f(u):d—t1:—7U(U—U1)2 L C(Rc—l)(}
\% Vv
+BUVI (-1 -+ ——— + (1+¢C
it 1< Vi (I+aO)W At )>
I
Uil | — I 1 C
+ Uy 1( 7 +(1+q20)11+( +q2 ))
U1 [Vl UV[l
g2t (1
+51U1V1< U LV Q+qC)Uiil ( +Q1C)>
U, U
uiLH|{3—-———-———-——(1 ).
+ B2Uy 1( U (U+a0)0 (1+q )>
From (H),
oY 0t a)V 1460 a(C-C) <1+Q1C_K><O
Vi (l-i-qlC)V 1+Q1C,'_ 1+q¢:1C 1+¢:C; VY, =
_1_l+(1+Q2C') 1+Q2CZQ2(C—@)<1+Q2C_£> 0
L (1+@O) 1+ ¢C; 1+ ¢C \1+¢@C;, L) =

Using the property that the arithmetic mean (AM) is greater than or equal to the geometric mean
(GM), we can derive the following inequalities

U, IV UV
4— 2 — —(1 C)<o0
U v (txaoumg G tad)
and - o
3—— ————  —(14¢0C)<0

U (1 —|—QQC)U1
Then VL (u) - f(u) <0 when RY <

Theorem 1 that are

1. Clearly, the functional Lg satisfies the following conditions of

8L1 (U(z,t) — U(y,1))*
>
(vgrm) =v [ / e
£ I% —11// (y,t)) dx dy > 0,
|£L'— |n+2s
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JLy /Ui / / V(z,t) = V(y 1)
WV, —— =
( 1oV (u)> k(1 —e)I; V(z, t)V(y,t |3: y|“+23
0L,
& <C’, %(u)> =0.
If RC < 1, then dcftl < 0. Hence, P; is globally asymptotically stable.
For (i ), we consider the Lyapunov function
£aw) = [ La(ula.t) da.
Q
where
U 1 51U V4 v C
Lo Uy ¥ LY Vo Peyw
() =0 <U2> T <I2> T F aCk1 -9k <V2> T <C2>
The computation of VLa(u) - f(u) gives
dL
VLy(u)- f(u) = =7
1 Vo1
:—@(U—U2)2+M<—1—K (1+aq1C) +Q1C>
U 14 q1Co Vo (QA4qaC)Va 14¢Cs
L Bolaly ( _ L 1 T @C)I | 1+ ¢C )
1 + q202 I 1+ QQC)IQ 1+ g2C9
L Pl ( Uy IVa (1+@C)UVIE 1 +Q10>
1+<]1C'2 12V 14+ qC)UsVol 1+ q1Co
BoUs 15 < _ _2 B 1 +qzCQ)U 1 +QQC>
1—i—ng’2 (14 @C)U; 14¢0Cy)
Since AM is greater than or equal to GM, we have
4_@_ vy (1+qC)UV I, _1+aC <0
U LV (1+qO)UVal 1+qCy 7
g _ Uy (1+¢@C)U 1+4¢C <0
U (14 q2C)Us 14 g2Cy S
Then VLo(u) - f(u) < 0 when RS > 1.
Moreover, the functional Lo satisﬁes the conditions of Theorem 1:
8L t) — Ul(y,t))?
U5z 2( U2// Ula, WD) gy >0
:L' t y7 |:E - y|n+2s
8L2 (y7 ))
I dxdy > 0,
< > 2// xt ey W =0
2
v 2 _ B1U2 Vs / / V(z,t) = V(y,t)) dzdy > 0,
8V (1+qCo)k(l — &)y V(z, t)V(y,t)|x — y|vt2s
8L2 P z,t) — C(y,1))?
== drd
< > o //th y,)!w yrm =
If Rg > 1, then we have % < 0, which implies that P; is globally asymptotically stable. ]

5. Numerical simulations

In this section, we first propose a numerical scheme to approximate the solutions of our PDE model (1).
According to [22], the fractional Laplacian given in (2) can be approximated in one dimension, for
u = {u;}jcz a function defined on the uniform grid ;, = {jh|j € Z} N Q with spacing h > 0, by the

following discrete operator
+o0o +0o0o

(—A)uy = Y (uj —ujp)wr = > _(—tj_p + 2uj — wjqp)wp,
k=—00 k=1
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where {wy, }rez are the positive weights satisfying >, ., wy = 1. As in [23], we choose

wp =C(Ls)[k| ™" (k #£0),
with C(1,s) the normalization constant defined in (3). It is natural to require that wy = w_j since
the fractional Laplacian is symmetric. When the explicit Euler scheme used in the discretization of

the model (1) is

un Tt — gy
2 J A7 L= D(=Ap)*uf + F(u}),
at time t,41 = (n + 1)At the scheme can be also written as
uf T = (14 Atwo)uf + D> At(uf —uf_)wy, + AtF(u}),
k40
“+oo
= (14 Atwo)uf + D> At(—uffyy + 2u} — uf_)wy, + AtF(uf),

k=1

where F' = (Fy, Fy, F3, Fy) is the reaction component given in (18), the weight wy can be arbitrary,
because it does not enter into (19).

As a result to approximate the model (1), the following recursive relations take place
N

UMt = (1+ Atwo) UF +dy > At (=UPyy + 207 — U wg + At Fy(uf),
k=1

I = (14 Atwo) I} + dy Z At (=1 + 200 — I wi + At Fy(ul),

k=1

N
VI = (14 Atwo) V] +d A -V A n
0) + VZ t +k—|—2V Vj_k)’wk+ th(’LLj),

k=1

N

C"+1 1+ A Cl+d A 207 — CJ At F

( + tZU(]) + CZ t ]+k+ k)’wk—l- t 1( )

k=1

The parameters of the SARS-CoV-2 model are typically determined through biological calculations
or estimates, taking into account morphometric data such as the numbers of various pulmonary cells
and lung volume. In this study, we analyze the numerical dynamics of model (1) using different
parameter values, as classified in [17], presented in Table 1.

Based on the given information, Table 1 pro-

Table 1. Parameter values for the SARS-CoV-2 model. vides the values for the parameters used: A —

Parameter Range value 500. m;r = 0.001 = 1.12 x 1077 —
Y 57.757 — 1.2 x 107 cells mL T day 7 . N B2
- 10-3day ! 1.1 x 107, ¢1 = 0.3, ¢o = 0.6, m; = 0.56,
B 0 — 1 mL virion ~* day p = 0.06, my = 10, and m¢ = 0.85. The re-
Ba 0 —1 mLcell™ day ~* maining parameters ¢ and k are considered as
”ZI 0.088 —0.58 ‘flayzld ) free variables.

88 — 580 virions cell " day— . ele1. e . .
my 94464 — 15.1232 day~! Infection fr?e equ1hbr1um Py: . To ana
o 0—1mL cell™! day ~* lyze the dynamics of Fj, we investigate the
me 0.05 — 1 mL cell™* day™* case where Rg = 0.9782 < 1. By selecting
P 0.05 — 1 mL cell™* Clla}’*l o = 0.05 and k = 88, it can be shown that

0 —1 mL cell™ . .
Z; 01 EL EZH” Py(5x10°,0,0,0) is globally asymptotically sta-

ble. This theoretical result is visually illustrated
in Figure 1, which depicts the convergence of the solutions of model (1) towards Fj.

Infection equilibrium without cellular immunity P;: Considering o = 1.1x1073 and k = 230,
we find that Ry = 2.3982 > 1 and RY = 0.6737 < 1. Figure 2 illustrates that the trajectories
of model (1) converge towards the infection equilibrium P;(2.0850 x 10°,520.5563,1.1973 x 10%,0).
This confirms the global asymptotic stability of P; and validates the analytical result obtained in
Theorem 3(i).
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Fig. 3. Dynamics of system (1) at P.

Infection equilibrium with cellular immunity P»: For ¢ = 4.5 x 1072 and k = 230, we have
Ro = 2.3982 > 1 and R} = 2.7559 > 1. In Figure 3, we observe that the trajectories of model (1)
converge to the infection equilibrium with cellular immunity P»(3.7506 x 105,188.2088,4.3292 x
10%,1.6977). This illustrates the results of the global asymptotic stability of P, given in Theorem 3(ii).

6. Conclusion

In this work, we have proposed a SARS-CoV-2 infection model with diffusion and antiviral treatment.
The proposed model incorporates both modes of transmission (virus-to-cell and cell-to-cell), the lytic
and nonlytic immune responses. The anomalous diffusion into the model was described by the regional
fractional Laplacian operator. We first established the equilibria and the threshold parameters of the
model. The global stability of such equilibria has been investigated by means of a new method con-
structing Lyapunov functions for a class of PDEs with and without delay involving regional fractional
Laplacian operator. In addition, the new method extended the case of the classical reaction-diffusion
equations with normal diffusion presented in [10].
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mobanbHa guHamika audysinHoi mogeni SARS-CoV-2 3
NPOTUBIPYCHUM NiKyBaHHAM i ApoboBuMm onepatopom Jlannaca

Eab Xaccani AL, Berriyi B.22, Xarrad K.M2, Axraia H.!
) y b b

LTa6opamopia ananisy, moderrocanmna ma cumymosarns (LAMS),
Daxyavmem nayx Ben M’Cix, Ynisepcumem Xacana II Kacabararxu,
n.c. 7955, Cidi Omman, Kacabrarka, Mapoxko
2 Pezionanvhuti yenmp oceimu i nideomosxu npogeciti (CRMEF),
20340 Jlep6 T'aned, Kacabranka, Mapoxko

Y miit crarTi NPOMOHYETHCSA Ta JOCTIIKYETHCS TJIOOAJbHA JUHAMIKA MOIENi iHQEeKIl
SARS-CoV-2 i3 jqudy3HuM Ta MPOTUBIPYCHUM JIKYBAHHSM. 3allPOIIOHOBAHA MOJE/b Bpa-
XOBY€ JIBa TIUISIXY Tiepenadi (Bif BipyCy [0 KJIITHHE Ta BiX KJIITHHA 10 KIITHHE), JATHUIHY
Ta HeaiTuuHy iMmyHHI Biamosizi. dudysis B mMomens GoOpMyTIOEThCS perionaabHUM JIpO-
6oBuM omeparopoM Jlammaca. Kpim Toro, riobasibHa acHMITOTHYHA CTIHKICTh PiBHOBaru
CTPOrO BCTAHOBJIEHA 3a JOIMOMOTOI0 HOBOT'O 3aIlPOIIOHOBAHOTO METOMY MOOymoBH (DyHK-
wiii JIsnynosa jig Kiacy piBHgub B yactunnux noxigaux (PDE) 3 perionajibaum npo6o-
BUM oreparopom Jlamraca. 3amponoHoBaHuil METO/T 3aCTOCOBAHO JI0 KJIACHIHUX PiBHIHDb
“peaktiii—nndy3il’”’ 3 HOpMaAJILHOIO TUdY3i€io.

Kntouosi cnosa: SARS-CoV-2; COVID-19; pezionarvruii dpobosuti onepamop Jlanaa-
ca; dupysia; Pynxyii JIanyrnosa; 2aobarvra cmitKicmo.
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