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In this article, we present a new algorithmic implementation of exact three-point difference
schemes for a certain class of singular Sturm—Liouville problems. We demonstrate that
computing the coefficients of the exact scheme at any grid node x; requires solving two
auxiliary Cauchy problems for the second-order linear ordinary differential equations: one
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(backward). We have also proven the coefficient stability theorem for the exact three-
point difference scheme.
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1. Introduction

Exact difference schemes for linear boundary value problems have been first introduced in [1,2|. These
schemes allow for the construction of truncated difference schemes of any order of accuracy. In [3],
these results were applied to the Sturm—Liouville problem, and in [4], to the singular Sturm—Liouville
problem with coefficients of a special form.

However, the practical use of such truncated schemes in the case of variable coefficients of a differen-
tial equation requires the calculation of multiple integrals at each grid node z;, posing computational
challenges. Addressing the need for high accuracy in practical calculations for nonlinear boundary
value problems, truncated difference schemes of high order were developed in [5].

In [6, 7], building upon the ideas presented in [8, 9], a new algorithmic realization of the exact
three-point difference scheme (ETDS) via truncated three-point difference schemes (TDS) of any order
of accuracy was developed and justified for the Sturm—Liouville problem. These articles demonstrate
that the coefficients of the ETDS and the right-hand side at any grid node can be expressed through
the solutions of two auxiliary Cauchy problems, each of which can be numerically solved using any
one-step method, such as the Taylor series expansion or the Runge-Kutta methods.

In this paper, we extend these findings by demonstrating that coefficients of the ETDS for the
Sturm-Liouville problem with a singularity at the ends of the segment [—1,1] can also be expressed
through solutions of the auxiliary Cauchy problems for second-order linear ordinary differential equa-
tions.

2. Exact three-point difference scheme for singular Sturm—Liouville problem

In the present article we consider the following singular Sturm—Liouville problem

% [k(az)d—u] —q(z)u(z) = =Ir(x)u(x), =€ (-1,1), (1)

dx
u(—1) # oo, u(l) # oo, (2)
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where
k(m) = (1 — x2)]€1($), 0< Cl < kl(x) < Cg, 0< Cg < q(x) < C4, 0< C5 < T(x) < 067 (3)
Ci,i=1,2,...,6 are constants. We introduce the regular grid

op={xj=-1+(j—0,5h, h=2/N, j=1,2,...,N, 2o = —1, an41 = 1}
and take the pattern functions v} (x,\), @« = 1,2, j = 1,2,..., N as the solutions of the following
Cauchy problems

vl
% [k(x)cil—a;l] — q(x)vi (2, \) + Ar(x)v](z,A) =0, =z € (20, 22),

4)
dvl(z, \ (
N =1 K™Y o

d dvl, ; ;

o |F@) - | = a@)vg (@A) + Ar(@)vg(z,A) =0, 2 € (z-1,2541),

. dvé T, A o (5)
Vo (@jg(-1)2s A) = 0, k(x)# = (—1)**H,
T=Tj i (~1)a

a=12 j=3-a4—qa,...,.N+1—aq,

d d'UéV N N
— |k(x)—==| — q(z)v3 (z,\) + Ar(z)vy (2, \) =0, z€ (zN-1,ZN+1),
dz dz (©)

dvd (z,\)
dx S
Similarly to [4], we establish the properties of the pattern functions.

v @y, A) =1, k(z) =0.

Lemma 1. The functions v} (z,\) > 0, a = 1,2 have the following properties:

1) vi(z,A\) >0, a=1,2forallx € (xj_1,2j+1) j = 1,2,..., N and are linearly independent at each
of these intervals;

2) these functions satisfy the next relation
’U{(ﬂ?j+1,A):’U%(3§‘j_1,A), j:2737"'7N_17 U%(:Eﬁ)‘):v{—i_l(:nj-i-l’)‘)) j:1727"'7N_17

1

oh s, A) = v (21, 0) + vb (a1, ) / oHE N [(€) — Mr(©)] de

ok, ) / ub(€, M)[a(€) — M ()] de,

z1

@s1,0) = o5 0) + ey, N) + (a0 [ Wl (€ V[g(€) — Ar(©)) de
(e [ €N — MQ] g, j =2, N 1,
o) = o v ) o o) [ ol € lale) = o) e
eolfaen ) [ 6 Dl - e

Proof.

1) We now prove that the functions vé(m, A), @ = 1,2, are linearly independent. As is known, for the
linear independence of solutions of problem (4), (5) it is necessary and sufficient, that the Wronskian
should be different from zero if at least in one point of the interval [z;_1,2;41]. Let us assume the
contrary for j = 2,3,..., N — 1. Then the Wronskian W[v{(:z:, /\),vg(:n, A)] is identically equal to
zero on the interval [x;_1,z;41]. Calculating the Wronskian at the points Tjy(~1)e, @ = 1,2, and

taking the fact that vg(xj_l, A) = 'U'{(;Uj_l'_l, A) into account, we obtain
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346 Khomenko N. V., Kutniv M. V.

. . G A
W v (z, \), vd (2, \)] oz QZ_M_
[v1(z, A), va (@, Mo=z,, ) Kr o)

It follows that v{ (Zj+1,A) =0, ie, U{(:E, A) is the solution of boundary-value problem

dx dx

U{(:Ej_l,)\):U{(:Ej_;_l,)\):O, j:2,3,...,N—1.
We now show that for sufficiently small h < hg and for A = \,, 1 < m < k, £k < N, problem (7)

has only the trivial solution. For this purpose, it is sufficient to show that for h < hg the following
inequality is satisfied:

a [k( )dU1] _ q(g;)v{(a;,)\) + )\r(az)v{(az,)\) =0, z€(xj_1,Tj41), o

“lgla) = (@) < Ar(0) <p, Va € layapl,
where By is the lower estimate of the smallest eigenvalue of the problem

d dv

dr {k’(iﬂ)%} +pv(z) =0, z€ (zj—1,2i41), v(zj-1)=v(zj41) =0.
This problem is known to be equivalent to the variational problem of finding the minimum of the
functional

: A / 2
min [ KO d¢
Tj—1

under condition

Tj41
o2 :/ " ) da = 1.

-1
Considering that h <1, z;_1 <{ < xjyq for j =2,3,...,N -1,
h?| 3
BO) > Cl1—€) > Ol — (-1 40,502 = &y {h - —] > 2y
and min ij“ "(6)]?d¢ =
h < hg the inequality

4h2’ = p,. Hence, there exists hg such that for all

3C 72
hAr(z) < 1167T Vo € [zj—1,2j41], 7=2,3,...,N—1
is satisfied. Consequently, it follows that U{(az, AN) =0,z € [zj_1,z41) for h < hy = ?{g){gz, which
dv{(x,)\)

=1

T=x;_ 1

contradicts the condition k(x)—~

Similar considerations show that Ul(:n A) # 0 holds in any point of the interval (z;_1,z;11], i.e.,
our function is of constant-sign on this interval. Thus, vl(x A), 1)2(95 A),Jj=23,...,N—1are
linearly independent on the interval [x;_1,z;11].

For j=1at A= \p, m=1,2,....k, k < N, we have v (2, \) = cpum(z), where u,,(z) is the
eigenfunction of the problem (1), (2) which corresponds to the eigenvalue A,,. We denote by «77
the minimum, and by z.. the maximum zero of the function u,,(z) on the interval (—1,1). If we
choose h < hy = Z(1 4+ 2™ ), then 2o = —1 4+ 1.5h < —1 + (1 + 2™, ) = 2™, is obtained. Hence,
vi(z,A\) # 0, x € [~1,29]. From the fact that v}(z2,A) # 0, follows the linear independence of
the functions vj (z, ), v3(z,\). Similarly, for j = N we get that for h < hy = 3(1 — 27, ) the
inequality v}’ (z,\) # 0, € [xn_1,1] is satisfied (then zy_; = =1+ (N — 1.5)h = 1 — 1.5h >
1—(1—al )= and therefore v{ (x, \) and v’ (z, \) are linearly independent.

max

Since from (4), (5)
@) =1+ [ o [t - @il nacar

zo 0

= [ %(H I <q<s>—Ar<s>>v{<s,A>ds> d#oj=2..N @)

max)

J

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 344-357 (2024)



Algorithmic implementation of an exact three-point difference scheme for a certain class . .. 347

then according to (3) and to the mean value theorem, there exists a point Z € (x;_1, ) such that

e > 1= [ o [ e = el foke ] dear > 1 - S - [ pobte )

GEPUGIEN dg) at

1
J
dens [
Tj—1 k(t) Tj—1
> [ S (1-@araco [ |en)]ae
€XTj— k(t) XTqg_—
j—1 j—1
Toodt Joo
_ / o (1= €1+ ACo)(w — i) [o] @, 1))
From these inequalities, it follows that U{(az, )\) >0,j=1,2,...,N on the interval (x;_1,2;_1+9)
for any small § > 0. Since the functions v](z,\), j = 1,2,..., N are of constant-sign, they are

positive on the entire interval (x;_1,2j4+1).
2) Proof is carried out by analogy with the proof of the corresponding properties from [10, p. 141]. ®

The following assertion is valid.

Lemma 2. Suppose that the assumptions (3) is satisfied. Then, for

01(1 — l’ 1)
h<hy=~{| ——3 9
0 Ci + ACs ©)
the following assertions are valid: '
1 e pattern functions have the properties: vi(z,A), 7 = 2,3,..., N Increase monotonically on
i) Th fi i h h 1 { A), 7 =23 N i icall
Tj_1,%ij+1|, and the functions vy(x, A), 7 =1,2,... ,N — ecrease monotonically on |x;_1,2j4+1);
i ja d the f 1 % A),j=12 N-—-1d icall yi ot
(ii) For all j =3 — a,4 — «,..., N +1 — «, a« = 1,2, it holds that
J
2 < va(z, A) < 2 (10)

3Co(1+2)(1 = 2jp—ne) [z —ajpne| — Cr(l—2) (14 2 (1))

Proof. We only prove the assertions for the pattern function fu{ (x, A) since those for the ,U%' (x,A) follow
analogously.
Note that equation (8) in connection with assumptions (3) leads, for any bounded A, to the in-

equality
; v dt 1 Cy+ ACs /x
J(x, ) < — 44T A6

j—1

vl (t,\) dt]

2(x —xj_q) > 1 C4+)\C6/x ;
=—-In(1+ J —_—t v (t, ) dt]| .
2 ( 1-2)(14+mz-1)) |C1 Ci 21 1)
Using the well-known inequality
T
< <
— <In(l1+7r) <, (11)
which is true for r > 0, we thus obtain
T —Tj-1

(x A) < c + c

1 04_1_)\06/90 j
= Gt AGs T i Ay at|
(1_3:)(1_‘_:17) 1) Ti_ 1( )

We now make the substitution

j—1

vl ()1 — 2)(1 + xj_1)
T —Tj-1

@{(m, A) =

in order to obtain

(J} )\) 1 Cy+ 2Cq / t -
j—1

Tj-1
+ - 7]]t)\d
C 01(1+:Ej 1) —1 ( )
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Applying the Gronwall inequality (see, e.g., [11, p.37]), we obtain

_j 1 Cy+ ACs /m t—xiq
Iz, \) < — - I dt
vl(w, ) Cy exp { 01(1 T l'j—l) . 1—¢ }

7—1

or, equivalently,

; 1 T —Ti_ 1 Cy + M\Csq /m t—xiq
J < J J . . .
Ul(t’ A) < Ci(1—x)(1+ ZL'j_l) P {01(1 + ZL'j_l) = 1—-t dt Vo € [x]_17$j+1]

-1
From the last estimate and the equality

S LT [ @@ - o nas

dx i1

follows the inequality

v (x z ;
e M GRESGIGE

7—1

Cy+ \Cs /x t—xj 1 Cy+ ACq /t §— 21
] AT AYe R AT AT S0 ge b g
01(1+l’j—1) Ti_1 1—1t P 01(1+l’j_1) zj_1 1—5 f

(04 + )\Cﬁ) /:c t— Tj—1
>9 - .
>? exp{cl(lmj_l) el

Jj—1

Since

1-t¢ 1—=z
and due to inequality (11), we get
/x T8 g < —(z—zj_1) + @z ) — ) (@ wj_l)z.
€T

T g —
/ T 1dt:—(ac—xj_1)+(1—xj_1)ln <1+w>,

Jj—1

, 1—t 12 T
j—1
Hence,
] (CatrCo)r—zj1)? 4(C4+ACg)n?
k(m)w >2—¢ Ci(+z;_1)(i—2) >2 ¢ 01(1,x§+1)
x

holds which proves that v{ (x,A) grows monotonically on (xj_1,z;41] given that the function g(t) =
2 — €' decreases monotonically, g(1/2) > 0 and the validity of condition (9).
Returning to equality (8), we obtain with the help of the proved assertion (¢) that

i 1 * dt Cy+MCs Tot—xiq
vl (z,)\) < a/ T + 20, v{(x,A)/ 1_;2 dt
Tj1 x

j—1

1 2(x —xj-1) Cy+ MCs
-1 1 J J
2C1 . ( + (1 — x)(l + I'j_l)> 4C1 !

r—Ti-1 r—Ti-1

Using the inequality (11), we get

(, A)

— T Ci+2Cs (r — 1)
I \) < L= xj-1 4 607 (2. \ J
Ul(x7 ) = 01(1 — :L')(l + l’j_1) + 201 ?)1(1', ) 1-— l’z ’
and )
; 1 2(x —xj_1) Ci+2Cs (x —xj-1)
J > 1 1 J _ J J
(@A) 2 5o < Taoa+ xj_1)> TR LR e
T —Ti Cy+2Cs (x —z;_1)?
S J _ J J
Z G0+ 21 —2,) ST LT e
Hence,
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vi(@A) [, 2(Ci+ ACe)h? 1
Ci(1—=2,,) | =~ Ci(l —x)(1+zj-1)

vl (2, \) L, 2Cat ACg)h? 1
01(1—:E?+1) - CQ(l-I—l’)(l—:Ej_l)’

which, taking the condition (9) into account, proves the estimate (10). [

xTr — :Ej_l

Tr — :Ej_l

Lemma 3. Suppose that the assumptions of Lemma 2 are satisfied. Then, for the problem (1)—(3)
there exists ETDS of the form

Ay; 4+ Apjy; = (ayz)ej — djy; + Apjy; =0, j=1,2,...,N, yo#o00, ynt1#oo, (12)

where .
Yzj = %, Yz j = w, a; = {%v{(:nj,)\)}_ , 7=2,3,...,N,
ai =an+1 =0, dj=T%(q,N), pj=T%(rN), j=12,...,N, (13)
P = s [ e @+ s [T e Nwio e
and
0<(1- x?—1/2)01 <a; < (1- w?—1/2)cé7 Ci = %v Cy= 3—%7 Lj—1/2 =25 — g7 (14)
0<C3<d; <Cy, Cp=2C;, 0<Cy5<p; <Cq  Ch=2Cs. (15)

The solution y(x) of problem (12) coincides with the solution u(x) of the original problem (1), (2) at
nodes of the grid wy, up to a constant multiplier.

Proof. First of all, we note that the problem (1), (2) is equivalent to the sequence of problems

i [k:(:n)d—u] —q(z)u(z) = =Ir(x)u(z), z € (xo,z2),

dz dz
du (16)
k(x)% = 0, wu(ze) = uo,
i [0 %] - a0 = w2 € (a0 -
u(a:j_l) = Uj—1, ’LL(J)j.H) = Uj+1, j :2,3,...,N—1,
% [k(a:);l—;b] —q(z)u(z) = =Mr(z)u(z), =€ (xn_1,TN+1),
(18)

du

. =0,

T=TN 41

u(rn-1) =un-1, k()

whose Green’s functions have the form
: 1 Tz, ) vh(€,N), 1<z <
T B T
’U{(ﬂi‘j+1,A) ?}1(6,)\)?}2(%,)\), ng gwj-i—h
We construct an exact three-point difference scheme. For this purpose, we write the obvious integral
representation of (16)—(18). Then, we have

Tjtl d du Tit1 .
/ G](waf)d_f [/ﬁ(f)d—f} dg —/ G (2,9)q(&) = Ar(Q]u(§)d§ =0, j=1,2,...,N.  (19)
i1 T
Calculating the integral in the left-hand side of (19) by integration by parts and using (4)—(6), we
get

Jj—1

Tj+1

u(§)

@A) @)

~ vl (z,\) dv] (&, \)
ol (211, ) e ' He) ’

RS dg
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For j =1, we have
1
vi(x, \)
—_—— k
v (22, ) [u2+ ®)

From (4) and (5), it follows that
vi(z v
k) A = [la(e) — ar(e) ke 0 de

dvl(x, \)

dv% (x, ) ’U% (x,A) k() = u(z) = 0.

dx u(aj)} a vi(za, )

dz
dvy (z, \) e 21)
) P2 = 1= [ la(e) - @) ohe N .
Thus, “
1 7)\ )
ST =) (14 [lat) = a6 v ae) |
’U% (:Ev /\) ’ 1 _
- ) [ ) - el V=0, 22)
For x = x1, let us multiply equality (22) by % Note that due to vi(z1,A) = v?(x2,\),
we have e
— 1 x2
Tty [m [ la(©) - @ vhie N de

L T el _
+hv%(x1,)\) /xo [a(€) = Ar(&)] 1(f,>\)d§] 0,

or, equivalently, in view of a; = 0,

1
7 (agugpq — arugz,1) — diug + Aprug = 0.

For j =2,3,..., N — 1, equality (20) has the form

V(e vl (z vi(z vl (@
1(7’)‘)) [u]'-q-l + kT(ZE)MU(:E)] + M [uj_l B k(g;)wu(ﬂj)] =0

vl (@1, A dz v{(zj11,A) x
Since it follows from (5) that
d’Ué(l’, >‘) a+1 * i
b)) — e [ (g - @l N =12 (23)
we have e

(e [ujH - <1 + [0 - ey ds) u(w)}

U{(‘Tj'i‘h)\)
v (x v ;
e [uj_l— <1+ / [q(&)—Ar(@]vi@,A)czg) u<x>] ~0. (1)
v1(Tj41, Tj1

] (@41,
. . . h’l){ (I],)\)U%(LEJ,)\)
of the pattern functions v{(zj11,A) = v3(zj_1,N), vd(z;, ) = U{H(:Ejﬂ,)\), we arrive at the exact
three-point difference scheme (12) for j =2,3,..., N — 1.

Let us rewrite (20) for j = N by

vi (2, ) vy (w,)) () vy (z, )
u(r) + ———
v (TN41, ) dx v (TN+41, )

Then, considering the equalities

vV (z z
b P g [ gl - are] ol (60 de

Taking in (24) = «;, multiplying the obtained equality by , and using the properties

[uN_l — k() % u(aj)] = 0.

vad(Z \) v )
M) L2 == [ 0 a1} (€ ) de,
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which follow from (5) and (6), we obtain

)
UN x TN+1
_ %/ [q(&) — Ar ()] Uév(& ) d€ - u(z)

V1 (TN+1,
ol (z, A r
@) (g | 10 - el €N de | utw)| =0. 20
Uy (33N+1,)\) TN-1
Taking x = xn and multiplying the obtained equality by ; Nz{\’(m;;) -~ &)‘) 5 we obtain
v (TN, A vy (TN,
UN — UN-1 1 N N
- — _— - A A)d
At e L0 = wr(©] o € v e
1 N
+——= q(&) = (O] vV (e, N de| =
el LG R CIEACEY 5]

which due to axy1 = 0, can be written as

1
7 (aN1Ug,N — anuz N) — dyun + Apyuy = 0.

Inequality (14) follows from (10). Indeed,
3 3
< §C2(1 + x])(l - .Z'j_l) S 502(1 - x?_l/z),

1 :
a; > 5Co(1 —z;)(1+ 25 1)>202(1—x§_1/2), ji=23,...,N.
(

We now prove estimate (15). Since
1 1

SE I 7 b Tj+1 ;
d; T /mjl Ul(&)\)q(g)df—i_hv%(xj,)\) /mj v(€,\)q(€) de,

in view of the positivity and monotonicity of functions U{(:E /\) ] 5(x, A) we have
xj J A Tjy1 D)
e wj-1 v1(25,A) T ”2(%7)‘)

In addition, using estimates (10), we obtain

PR ;/m’
’ U{(:Ej’)‘) Zj—

Tj+1

1 J
lenast s [T de v ae

J

~h

Analogously, the inequality 0 < Cf < p; < 2Cg can be proven. ]
Note that if the solution of problem (1) is normalized by the condition

1
/ r(z)u’(z) de = 1,
0

then, for the exact normalization on the grid, we have

i1, 2
Z/x [le}\)yj‘f‘ ]-U_2 (’/\))yj—ll dx

v (2, \) v 1(xj_1,)\
1 vi(x, \) ]2 /1 [ ol (z, ) r
+ r(z) | —1-% dz + r(x) | ——1L de = 1.
/—1 ( ) |:U%($j’>‘)y1 TN ( ) vév(xNv)‘)yN

3. Coefficient stability of ETDS

When calculating the coefficients of difference schemes, errors are inevitable. Therefore, it is natural
to require coefficient stability of difference schemes, i.e., stability to perturbations of the coefficients
(see [1]). In the following, we prove the coefficient stability of the constructed difference schemes. The
property of coefficient stability of a difference scheme allows us to prove the convergence of truncated
three-point difference schemes.
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We consider the difference problem (12) in the space Hj, of grid functions y with the following
scalar product and norms:

(y,0) = > hy©v(©), vl =wu"* lyllo= max [y (€)].

E€wp

Suppose that \* = A is the nth eigenvalue of this problem, and that y = y,, is the normalized
eigenfunction. There exist IV real eigenvalues )\}1‘, /\}2‘ Yo ,/\}](,, to which the appropriate eigenfunctions
Y1,Y2, - -, yn correspond. The eigenfunctions are orthonormalized with weight p, such that (py,, ym) =
0 holds for n # m and (pyn, yn) = 1.

Multiplying (12) scalarwise by y and taking the difference Green formula (see [10, p.47]) and the
equalities a1 = a1 = 0 into account, we find

h (a7 yagc) + (d7 y2)
A RN (y) (p7 yg) .
It is easy to see that the difference problem (12) is equivalent to the variational problem

M = minRy(y), M =max min Ry(y), m=12,...,n—1, n=23,...,N.
Y Ym  (py,ym)=0

The following assertion is valid (see [4]):

Lemma 4. For the eigenvalues and the eigenfunctions of problem (12)—(15) the following estimates
are satisfied:

Min? < M < Myn?, (27)
[Vayn||lo < Msvn, la(yn)zllc < Man®?, (28)
where the constants My, Ms, Mz, My do not depend on h andn,n=1,2,...,N.

Together with the ETDS (12)—(15), we consider the perturbed three-point difference scheme
Aj+Npg=0, zewp fo#o00, fng1# o, (29)
where
Aj = (afa)e —dy, T €wp, @1 =ant1 =0.
Introducing a function z = y — g, we obtain the boundary value problem
Az+ MNpz=—W(z), ze€wy 2 #00, 2zyi1F# 0, (30)
where
U(z) = Aj+ Npg.
Using the equation (29), we can rewrite the function ¥(z) into
U(x) = Aj+ N'pj — Aj — N5
= ((a=a)ga), — (d=d)g + X"(p = p)g+ (\" = \")pg
= ¢(x) + (A" = N")pg,
where . .
b(@) =ne +4%(2), n=(a-a)js ¢'=-(d-d)j+N(p-p) (31)
The parameter A" is an eigenvalue for the difference operator of problem (30). Thus, the inhomo-
geneous equation (30) is solvable only if the eigenfunction y(z) is orthogonal to the right-hand side of
equation (30), or, more precisely, if the equality
(U.y) = ($,y) + (A" = M) (pg,y) = 0 (32)
is satisfied.
Only a single eigenfunction, determined accurately up to an arbitrary multiplier Cp, corresponds

to the eigenvalue A*. We choose this multiplier in a way such that the function 7 = Cyy is orthogonal
to the difference z =y — ¢:

(py,z) = 0. (33)
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Due to the normalization condition (py,y) = 1, we thus obtain
(p7,y) = (py, ¥ — 2) = (py,y) — (py, 2) = Co(py, y) = Co.

If §y -y as h — 0, we can assume that Cy > 0.

Further,

(0,5°) = (0, (7= 2)%) = (0, 5°) = 2(p, 29) + (p, 2*) = C3(py,y) + (p, 2°) = CF — (p, 79),
is valid and, hence,
1_08 = —(p,Z@?)— [(pvgz) - (ﬁ7g2)] (34)
We use equality (32) for determining A" — \:
(r7,y) Co

We transform the right-hand side of equation (35) by taking (31), the summation by parts formula
(see, e.g., [10, p.47]), and the equalities a; = a1 = 0 into account
From this and the estimates (28) for 4, gz, we find
(0, 72)| + (", 7)]

N Y,y
N3 < I(ng)l < &
7i‘ 17 ] 17 * *
< lalle( InD) + llgllc (. [+]) < Mn®2[(1, 1)) + (1, [*)].

g
We arrive at the following assertion.

Lemma 5. Suppose that the conditions (14), (15) for the difference Sturm-Liouville problem (12)
are satisfied. Then, the estimate

A = Ab] < M1 [n]) + (1, [67])] (36)
is valid, where the constant M > 0 depends on C!, i =1,2,...,6, and Cy.

We now find an estimate for zZ. Since § = Cpy, we see that g satisfies equation (12) and (p, g2) = C’g,
and for Z = § — ¢ we arrive at problem (30).
This problem is reduced to a discrete analogue of the integral equation

2(a) = N(G(2,€), p(§)2()) + (G(x,€), L (€)), (37)
where G(z,£) = G"(x,€) is the difference Green function of the operator Ay = (ayz), — dy with

boundary conditions yg # 0o, yn+1 7 oo (see [4]).
The eigenfunction g of problem (12) satisfies the equation

g(x) = N'(G(2,€), p(©)U(E)). (38)

We transform equations (37) and (38) into such a form such that the corresponding kernels become
symmetric. For this purpose, we use the substitutions

v(x) = Vp()z(x), @x) = pl)y(r), K(z,§) =/ pl)p€)G(z,E).

Then equations (37) and (38) take the form
vn(z) = )‘Z(K(‘Taf)ﬂjn(f)) + f(z), flz)=(K(z,), \Il(é“)% \P(S) = ) (39)
n(@) = A1(K(2,€), ¢n(€))- (40)

The condition of orthogonality of the function f(x) to functions ¢, (z) is satisfied in view of con-
dition (32):

(pula), F(2)) = (nla), (2, 8), WD) = (B(E), (K () ()
- 55 (#€.006) = 57 (S5 vA) = 57

n

(P, ) =0.

We rewrite condition (33) as
(¢n,vn) = 0. (41)
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Searching for the solution v(x) = v,(x) of equation (39) of the form

) + Z ckpr () (42)
k£n
under the additional condition (41), we substitute this expression to the right-hand side of equation (39)
to obtain

N—
un(x) = Z K(x,),01()) + An(K (2, £), £(£))- (43)
o
Expanding f(z) by the eigenfunctions {¢y(z)}

=Y feer(@),  fr = (From),

k#n
it follows that N
Jr
(2.0, 56) = X Leuto)
k=1, 7k
k#n
Thus, in view of (40), we can rewrite equality (43) into
N-1
&, f
n(a) = f@)+ 00 Y |35+ 2| uto) (a4
k=1, -7k k
k#n
Due to equality (44), we have b ,
cx = (n — f,0k) = )\hck + )\h(fatpk%
and substituting cx, = A (f, ¢r) /(AR — A1) into (42), we obtain
N Ml o)
o) = 1)+ 3 o), (49
k= )
o

Multiplying the equation (45) by a*(z), 0 < p < 1, we can estimate the second term on the
right-hand side of this equation by

N-1 N-1

Z An(frer) h Z \@k’ h Z (A
mA\ R < 12 )\ A

kn k;ﬁn k;én

Let € > 0 be an arbitrary number independent of h. We choose the number ng in a way such that
M= (1+e)Al. Then
1/4 N-1 ryhy1/4 r N—1
> e Y MY e
£ A £ (Al)3/4

k=ng k=ng

where the constant M > 0is 1ndependent of h.
Since A — A\ for k < ng as h — 0 (see [4], Theorem 1), we have for a sufficiently small h < hy,

that
no—1 )\h 1/4

Z ‘)\h )\h‘

where M does not depend on h.
Hence, the estimate
[a*vnlle < M [la* f| (46)

is satisfied.
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We transform the expression for f(z) into

f(2) = (K(z,€), T <\/ OV Gt (@): o(0)(Gl, €), W(€))

= (N = X" /p(2) (G2, €), p()F(€)) + V/p(x)(G(z,€), ne (€) + ¥ (€))
= (A" = \")/p(2)(G(,€), p(&)ii(€)) + ¢p<m>{—<a(£>Gg<x,é)m(&)) +(G(z,8),v*(9)}.

Hence, taking the estimates (see [4])
la*(§)G(x,€)llc < Cr, [Ja€)Ge(=,8)]|, < Cs,

into account where the constants C7, Cs do not depend on h and n, we obtain
ot le < | (@ieceo. 5| +IVow @ @6t 006 e

+ Vo) (a"G(a,€). p(€)i(e HCW‘—A"!\Ml{(,5()+<1,\¢*\)}+M2|Ah_m.

Substituting this estimate into (46), returning back to the function z(z) = v(x)/y/p(x) and taking
the inequality (28) as well as Lemma 4 into account, yields

ozl < M { (1, |2]) + (1D} -

We are interested in the difference z = y — ¢ which is expressed by

z—i+1_00~—5+ 1-CF
TG G VTG T aran”
Since ||a*g|| is bounded, it follows that for a sufficiently small h, we have
lla*z]| 1-C§ ~ - 2
Iz < ® <M i 11— .
o 2llo < e + [ s Il < M(Co) (2l + |1 = C3])

As it is apparent from formula (34),

1= G < (p.2) 2 (0.5) 7+ (0.7) = (7.57)] < MillaZl o + | (0.57) = (5.57)].
If p is chosen as = 0.5 + €, where 0 < € < 0.5, we get

la®*"=2lle. < 2 ([Ja®* 7] + [ (0, 5%) = (.57)1) -

0.5+¢

Inserting the estimate for Ha z HC, we make sure that by ¢ — 0 the following proposition is true:

Theorem 1. Suppose that the assumptions of Lemma 4 are satisfied. Then, for sufficiently small
h < hg, we have the following estimates:

IVaa = ga)lle < M1 { (1. 2]) + (110D } + 28] (0,5%) - (5.5,

[N} = Ab] < Ms {(1, Inl) + (1,197 ])}
where the constants M;, i = 1,2,3 depend only on C!, i =1,2,...,6, and Cy.

This theorem proves the continuous dependence of the solution of problem (12) on the coefficients,
that is, the coefficient stability.

4. Algorithmic realization of ETDS

We pass to the algorithmic realization of ETDS (12). First of all, note that this scheme can be written
in the form

(ay:?:)x,j - (d] - )\P])y] = 07 j = 1727 e 7N7 Yo 7& 0, YN+1 7é o0, (47)
where

1 -t
a; =any1 =0, aj:[ﬁv{(xj,)\)] , i=2.3,...,N, (48)
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1 I .
R / e la© o)

1 Ti41 ‘

b [ N - MOl d, =120 N (49)
hv2(‘7:j7)‘) Zj

We express the coefficients a;, d; — Ap; of the difference scheme via the solutions of the Cauchy

problems (4)—(6). Due to (48), we already have the necessary representation for a;.
In view of (21), (23) and (25), we rewrite equalities (49) as

1 I 1 I (.
dj = Apj = ———— k‘(ﬂﬁj)Ll @) oyl 1 —k(xj)idvz(%’ Ny
hv ($j’ A) dz hvy (x5, A) dx

=h" IZ D) [0l (25, N)] 7 [md (e ) + (<1)°], 5=2,3,...,N 1,

1 dvi(z1, ) 1 dvd (21, \)
dy — A\p1 = k 122 —k(x)————"—+ -1
L= An hot(z1, ) (21) dx * hvd(z1, ) [ (1) dx
2
- Z 1 [l (2, V)] 7 [md (21, A) +a — 1],
1 dol¥ (zn, \) ] 1 [ dvév(a:N,)\)}
dy — X\ (o) ZLEN A gD () 22N A
N AN = hol¥ (xN,)\) [ (@) dx * hol¥ (x5, ) (@) dx

—hlz D [0 (o, V)] [md (v, A) +a = 2],

where

ml (z,\) = k(m)w

Thus, the ETDS (47)—(49) can be written in the form
(ay@)xJ — (dj — )‘pj)yj = 0, j = 2,3, e ,N — 1,
1 1
7 02Ye1 — (di — Ap1)y1 =0, —7ONYz,N ~ (dn — Apn)yn =0,

where

1 !
a; = [ﬁv{(ajj,)\)} , jJ=2,3,...,N,
dj — Apj =h" IZ 1o+t vj 3:],/\)]_1 [mé(:nj,)\)—l—(—l)o‘], j=2,3...,N—1,

dy — )\pl—hlz D) (ol (21, )] 7 [mb (@1, A) +a— 1],

dy — ApN = IZ a+1 JZN,)\)] [mg(xN,)\) —I-Oé—2] .

Thus, for calculating the coefficients a;, d; — Ap; of ETDS for any node z; of the grid wp, it is
necessary to solve two Cauchy problems (4)—(6) with smooth coefficients: at @ = 1 on the interval
[zj_1,x;] (forward) and at o = 2 on the interval [z}, z;1] (backward). If each of the specified Cauchy
problems is solved numerically by any one-step method (Taylor series expansion or Runge-Kutta
method), we will obtain a truncated difference scheme. The investigation of accuracy and development
of the algorithm of finding the solution of such scheme will be performed in further work.
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AnropntmidHa peanisauisi TO4YHOI TPUTOYKOBOI PI3HULLEBOI CXeMun ansa

DEesAKoro Knacy cuHrynsipiux 3agad LUrypma—Jliysinns

Xowmenxo H. B.12, Kyruis M. B.1:3

L Inemumym npuxaadnuz npobaem mexamiry i mamemamuxu im. . C. Ilidcmpueavwa HAH Yrpainu,
sys. Hayxosa 3-6, 79060, Jlveis, Yxpaina
2 Tpipcokuti ynisepcumem, Ynieepcumemcovke xiavue, 15, 54296, Tpip, Himewwuna
3 XK ewyscoruti mexnonozivnuti ynisepcumen,
eya. lloscmanyie Bapwasu, 8, 35959, Kewys, [loavwa

VYV miit crarTi po3po0JIEHO HOBY AJTOPUTMIUHY PEasIi3aliifd0 TOYHUX TPUTOYKOBUX DI3HU-
IEBUX CXE€M Ha HEPIBHOMIpHIiH CITII [/ JedKoro Kjacy cuHryaspumx 3ajaqd I[lltypma—
Jliysinna. Ilokazano, 1o fjsa ob4uncierHs KoedillieHTiB TOYHOI CXeMU B JIOBIILHOMY BY3JIi
ciTkm 2; moTpibno po3s’asarn ABi JonoMixkHi 3agadi Ko jqya miHiiHIX 3BHYaiinux 1au-
depeHIiaTbHIX PIBHANb IPYroro MOPIKY: OAIMY Ha Bimpisky [z;_1,x;] (Bmepen) i omiy
Ha Bimpisky [z;,x;+1] (Hasaxm). JoBemeno rTeopeMy mpo KoedilieHTHY CTiHKICTL TOUHOL
TPUTOYKOBOI PI3SHUIIEBOI CXEMH.

Kntouosi cnoBa: cuneyaapna sadava IImypma—Jliyeinis; mouna mpumoukosa pidnu-
uesa crema; KoepiyieHmma cmitkicmo.
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