INFORMATION SYSTEMSAND NETWORKS

| ssue 16, 2024

VJIK 004.05

IMPROVED SOFTWARE SYSTEM
FOR CALCULATING THE RELIABILITY INDICATORS
OF COMPLEX TECHNICAL SYSTEMS

Maksym Seniv, Stepan Zdebskyi?

Lviv Polytechnic National University, Software Department, Lviv, Ukraine,
L E-mail: maksym.m.seniv@Ilpnu.ua, ORCID: 0000-0003-1044-4628
2E-mail: stepan.zdebskyi.mnpzm.2024@Ipnu.ua, ORCID: 0009-0000-4454-2539

© Seniv M., Zdebskyi S, 2024

The article analyses the literature sour ces, which investigate the existing methods and means of
calculating reliability indicators of complex technical (in particular, software) systems. The reliability
model of a modern complex technical system is often depicted in the form of areliability block diagram
(RBD), which may contain thousands of elements, each transitioning between different states (e.g.,
operational, failed, restored). Thisleads to a vast space of possible states in the corresponding Markov
model. Thereliability behaviour of a system is commonly described by a graph, with nodes representing
system states and edges representing possible transitions between these states. A nhumber of software
products can be used to automate the calculation of reliability indicators for complex technical systems.
However, these products have several limitations, including: difficulty in implementing into design and
development processes; significant costs for licenses and staff training; lack of compatibility with other
reliability analysis and life cycle management products; lack of tools for working with databases, etc.
Most of the outdated products are desktop applications with an insufficiently user-friendly graphical
interface. The primary objective of this work is to develop an improved software system that includes
the modification and implementation of a recursive algorithm for forming an operability condition and
visualizing a circular graph of stateg/transitions. With the help of the system, it is possible to automate
the construction of reliability flowchartsfor complex technical, in particular, softwar e systems, calculate
the operability condition using an improved recursive algorithm and method for determining the
oper ability condition, determine the system states and visualize them using an n-ary or circular graph.
Additionally, the system offers tools for calculating reliability indicators: availability and downtime
factors, time between failures, failure flow parameters, etc. The advanced software system enables
automated calculation of reliability indicators for software systems of any complexity level and reduces
the influence of the human factor in the process of reliability design.

Keywords. software, RBD, reliability design, states and transitions graph.

Introduction and problem statement

The relentless growth of society’s dependence on software and hardware systems has led to
increasing demands for their reliability and safety. Accordingly, the relevance and importance of reliability
analysis as a tool for ensuring the sustainable operation of technical systems is undeniable. Unfortunately,
traditional methods of reliability analysis are often unable to adequately address the challenges posed by a
large number of parameters and their interactions within complex systems. This leads to the need to
develop new approaches and tools that would allow reliability analysis to be performed efficiently and with
high accuracy. The lack of timely and objective reliability analysis can lead to serious consequences,
ranging from financial losses to threats to human life.

Improved software system for calculating the reliability indicators of complex technical systems 291

The rapid growth in the complexity of technical systems requires that reliability analysis and
forecasting tools be developed at the same pace. They are required not only to process more data, take into
account a wide range of factors, adapt to new hardware and software systems, but also to ensure high
accuracy and reliability of the results. A number of software products are currently used to automate the
calculation of reliability indicators for complex technical systems, such as PTC Windchill [1], RAM
Commander [2], BlockSim [3] and Isograph [4]. However, these products have several limitations,
including: difficulty in implementing into design and development processes; significant costs for licenses
and staff training; lack of compatibility with other reliability analysis and life cycle management products;
lack of tools for working with databases, etc. Most of the outdated products are desktop applications with
an insufficiently user-friendly graphical interface. Such systems usually do not provide bug fixes or new
functionality. More modern products can be either desktop or web-based, and are characterised by a user-
friendly interface and regular release of new versions. Accordingly, there is a need to develop new and
improve existing tools for calculating reliability indicators of complex technical systems that would
eliminate the above shortcomings and enable automated calculation of these indicators, while ensuring
acceptable accuracy and cost of work.

Analysis of recent research and publications

Software reliability modelling is an important component of the process for ensuring quality and
predicting system behaviour under various operating conditions. The reliability model of a modern
complex technical system can include thousands of elements that alternately exist in different states (e. g.,
operational, failed, recoverable) [5]. This leads to a vast space of possible states in the corresponding
Markov model. The reliability behaviour of a system is commonly described by a graph, with nodes
representing system states and edges representing possible transitions between these states [5].

In [6], the issue of reliability modelling for uncertain environments is addressed, and a new model is
proposed that minimizes the number of assumptions and parameters and is intended for broader use
compared to traditional models. The proposed model was compared with 21 existing models using two
datasets, 15 criteria, and a multi-criteria decision-making method. As a result, it was proven that the NHPP
SRM (Non-Homogeneous Poisson Process Software Reliability Model), which takes uncertain operating
environments into account and minimizes assumptions, is suitable for general situations with fewer
parameters, demonstrating good results when compared to existing models [6].

The publication [7] proposes a neuro-fuzzy hybrid method that combines a self-organizing map and
fuzzy time series forecasting to create a reliability prediction model. The methodology includes a
clustering algorithm to divide software failure data into intervals, which are then used to create fuzzy sets.
These sets are used to establish fuzzy logical relationships and their groups, based on which reliability
forecasting is performed. The proposed neuro-fuzzy hybrid approach to software reliability prediction
demonstrated a significant improvement in accuracy compared to existing fuzzy time series-based models
[7]. Experimental results confirm the effectiveness of this method, making it suitable for improving
software quality. The flexibility and adaptability of the proposed approach allow it to be applied to
different types of software and usage conditions [7].

Queue-based simulations using the “first in, first out” principle are also used to describe behaviour,
model the error detection process, and assess software reliability [8]. In [9], a data-driven software
reliability model using deep learning is proposed, while in [10-11], software reliability growth models are
based on the hypothesis derived from the logistic model and take into account the effectiveness of defect
correction.

All of the aforementioned models and methods can be used to analyse the reliability of technical
(particularly software) systems. However, their implementation in existing software products for
automating the calculation of reliability indicators for complex technical and software systems is
problematic, as it requires significant resources for programming and verifying the results of applying such

292 M. Seniv, S Zdebskyi

models to real products. Therefore, an urgent task is the improvement of existing software products for the
automated calculation of technical system reliability indicators.
Formulation of the article objectives

The aim of this work is to develop an advanced software system by modifying and implementing a
recursive algorithm for determining the operability condition, as well as tools for visualizing a circular
graph of states/transitions. With the help of this improved system, it will be possible to automate the
construction of reliability block diagrams (RBD) for technical systems, calculate the operability condition
using the improved recursive algorithm, determine system states, and visualize data using an n-ary or
circular graph. In addition, the system provides tools for calculating various reliability indicators, such as
availability and downtime factors, mean time to failure, failure rate parameters, and others. To achieve this
goal, it is necessary to: analyse the existing methods and tools for calculating reliability indicators of
complex technical systems; formulate the requirements for the improved software tool; design and
implement the advanced software system for calculating the reliability indicators of complex technical
systems; and verify the obtained results.

Presentation of the main material

The primary task of this research is to extend the functionality of the existing product [12] designed
for the automated calculation of reliability indicators for technical systems, addressing users’ needs for
rapid and objective reliability analysis using RBD, state graphs, and statistical forecasting methods.
Accordingly, the following components were developed:

1. A module for determining the operability condition based on an improved recursive algorithm for
structural diagram analysis.

2. A module for visualizing a circular state graph.

Together, the system should provide the following functionality:

1. Construction of a reliability block diagram for technical systems.

2. Determination of the system’s operability condition using the method [12] for operability
determination or an improved recursive traversal algorithm.

3. Construction of n-ary and circular state and transition graphs for repairable and non-repairable
systems.

4. Determination of the probability distribution of the system’s states.

5. Calculation of the system’s reliability indicators based on the probability distribution of its states.

During the modification of system [12], a decision was made to adhere to the principle of non-
interference with the original code to avoid errors and ensure more flexible integration of new modules and
the overall system. The VIPER_RC module calculates the operability condition of a technical system using
the improved recursive algorithm. The VIPER_CircleGraph module is a web application designed for the
construction and visualization of a circular state graph of the system. Additionally, a server application
based on the ASP.NET Web API framework was developed to enable interaction between the main system
and the VIPER_CircleGraph web application.

The core algorithm of the VIPER_RC module is an improved recursive algorithm for calculating the
operability condition of a technical system. The input for the algorithm is the structural diagram of the
technical system, while the output is a string containing a Boolean expression that defines the conditions
under which the system remains operational. The recursive algorithm processes the structural diagram as a
directed graph with two types of nodes: a module and a connector node. The main idea of the algorithm is
to use a combined graph traversal and recursive calls for each segment of the graph, which is a part of the
structural diagram and is separated by two nodes.

A connector node in the structural diagram of the technical system does not necessarily indicate the
beginning of two or more parallel branches of the directed graph; however, if two or more modules or
graph segments are executed simultaneously, they must begin and end at a node. Each connector node is

Improved software system for calculating the reliability indicators of complex technical systems 293

either the beginning or the end of a segment (Fig. 1), which may contain only modules, parallel segments,
or be empty. Each segment contains a start and an end connector node. Since a given system may be part
of a larger system, the structural diagram of this segment begins with a start connector node and ends with
an end node. Therefore, for the recursive algorithm, it is essential to have data on the start and end nodes of
all segments of the diagram.

The first part of the algorithm involves searching for the start and end nodes for all segments of the
system’s graph. The start node indicates the initial point of traversal for a segment, while the end node
marks the point where recursion ends at the current level. If the current node is the final node of the
system’s graph and all parallel segments have been processed, the result is returned, and the algorithm is
completed.

Rec Levell

Start

TSSO — S Oo—@

Rec Level2 Rec Level3A /

Fig. 1. Example of dividing a structural diagram into segments

One approach to this task is performing a depth-first search (DFS) on the structural diagram. Since
each segment must have both a start and an end node, no segment can exist with only one or none of these
nodes. By creating an array of all the diagram’s connector nodes, we can use DFS to locate the
corresponding end nodes. If the current search node is a start node of a segment, the end node is the next
node at that level. Applying this algorithm to all connector nodes, except the system’s final node, yields
corresponding “start-end” pairs. According to this approach, a specific node can serve as both the start
node for one segment and the end node for another. This behaviour is logical and permissible since a
connector node can have multiple input and output connections, unlike a module, which should have only
one input and one output connection. Finding the start and end for each segment in a scheme with solely
sequential connections is a trivial task. However, the structural diagram can simultaneously contain both
sequential and parallel connections. Therefore, the identified end node of a segment must be the next node
at the current level. To achieve this, while searching for the end node of the current segment, DFS is
performed from the current node to the final node of the entire diagram. The generated list of traversed
nodes will certainly contain the end node for the current segment. Afterward, a similar traversal is
performed through the other branch of the parallel connection. The first node found in both arrays is the
end node of the current segment (Fig. 2).

Algorithm steps (Fig. 2):

1. Identify the starting node of the segment. The starting node for the search is the current node
from the array of all nodes in the scheme.

2. If this node has more than one outgoing connection, choose two branches of the parallel
connection. If this node has only one outgoing connection, perform a depth-first search to the end of the
graph and designate the first node in the traversal array as the ending node, then proceed to step 5.

294 M. Seniv, S Zdebskyi

3. Select one branch of the segment and perform a depth-first search to the end of the graph. Record
all visited nodes in a list.

4. Select the other branch of the segment and perform a depth-first search until a node that is in the
list is found. If such a node is found, mark it as the end of the current segment.

5. The current element becomes the next element in the array of nodes in the structural scheme.

6. If all elements in the array of nodes in the structural are currently used to automate the
calculation of reliability indicators for complex technical systems, such as PTC Windchill have been
processed — end; otherwise, go to step 1.

NO;N2
NOM1>N2M3+>N3>M8+N1

NO->M1- [N2]

N2-N4-3M4->N5-3MB->NE-YN3->M8->N1
N2-5N4+M4->N5-3MB->NB-> N3]

N2Z;N3

Fig. 2. Visualization of the algorithm for finding the starting and ending nodes
for two segments of a diagram consisting of eight modules

The second part of the algorithm involves performing a combined recursive traversal of the graph.
This part is the main component of the algorithm; it accepts a data structure describing the reliability
scheme and a dictionary in which the key is the starting node of a certain segment, and the value is the end
node. The core of the recursive algorithm is a function that executes when traversing the starting node of
each segment and returns a value upon reaching its end. The returned value is a sub-expression that reflects
the operational condition of the current segment. If the end node of the entire structural scheme is reached,
the function will return a cumulative result obtained by combining all returned results.

Steps of aforementioned algorithm (Fig. 3):

1. Assign the current element of the search the value of the starting element of the segment. The
current operational expression is empty.

2. Add the current element to the list of visited nodes. Assign the value of the end element for this
segment using the dictionary of starting and ending nodes.

3. If the current element is the end element of the scheme, return the final result. If the current
element is a module, add the expression “AND + [Name of the current module]” to the current formula,
identify the current element as the next element of the scheme, and proceed to step 2. If the current element
is a node, proceed to step 4.

4. Calculate the number of outgoing connections of the node. If the number of outgoing connections
of this element is equal to one, then the current element becomes the next element of the scheme; proceed
to step 2. If the number of outgoing connections is greater than one, proceed to step 5.

Improved software system for calculating the reliability indicators of complex technical systems 295

5. For each individual branch of the current branching, a recursive function call is performed,
specifying as parameters the starting element as the next element for each branch and the end element
obtained from the dictionary of starting and ending nodes for the current node. The list of visited elements
of the scheme is also passed as an argument. The recursive call brings the algorithm back to step 1 for
another function stack. Each returned value is added to the current operational expression according to the
formula: “[current expression] AND ([branch expression 1] OR [branch expression 2] OR ... OR [branch
expression N])”. If all paths have been explored, the current element is assigned the end node of the
segment; proceed to step 2.

Fig. 3. Traversing order of the RBD using the improved recursive algorithm

At the top level of recursion, the result obtained from traversing all nodes and segments is the final
output of the algorithm. It is crucial to consider the nuances of representing logical operations “OR” and
“AND.” For correctly constructing the expression, it is important to account for the possible arrangements
of nodes and modules. This also includes parentheses, as their incorrect placement in the formula can
distort the result. Additionally, certain segments may be empty, meaning they contain no modules. In such
cases, these segments should not influence the overall operational expression. The block diagram
representation of the improved recursive algorithm is shown in Figures 4 and 5.

The software implemented in this work consists of two components. The first part is an extension of
the original WPF application and performs the calculation of the operational expression of the technical
system using the improved recursive algorithm. This part was developed using C# and WPF tools on the
.NET version 5.0.0 platform. The second part is a web application designed for constructing and
visualizing the circular state graph of the system (Fig. 6). The implementation of the web application was
carried out using the React.js framework. The libraries used include ReactFlow version 11.11.2, which
contains modern tools for building graphs of any structure and complexity, ReactRouterDOM version
6.22.3 for facilitating quick navigation between the application pages, and D3 version 5.5.0 for interactive
data visualization. The server application was implemented based on the ASP .NET Web API framework
and is responsible for the interaction between the main system and the web application.

In the reliability analysis panel, selecting the “Circular Graph” option opens the main page of the
web application displaying the circular state graph. The page contains the main working area where the
circular state graph is displayed as a graph, with elements arranged in a circle (Fig. 6). Additionally, the
page includes a navigation panel and a mini map. The user can double-click the left mouse button on a
node of the graph, after which a page with detailed information about the graph will open

296

M. Seniv, S Zdebskyi

Start

Current node = first node
in the array of nodes in
the scheme

Crucok enemenTia anA

BignoeHo noToukor

nepemnRaY = £ci HacTyri syani

Segment start node = current
node;
Segment end node = null

Cutgoing connections
of the cument node > 1

Qulgoing connections
of the current node = 2

List of items o view = two random

next items from the current one:

The current
elemant in view 5 3 node
&& the current element in
wiew is in the traversad
depth path

No

Yes

List of nodes to view = alt
subseguent nodes relztive to the

current one

Is the current viewing
element a node
Yes

The currant viswing element =
element from the list of eleme:

2 random

The traversed depth path =

element of the scheme

The current viewing
element == the end node of the.
scheme

The cument viewing element = a
random next element:
The traversed path += the current

eleman

The current viewing element =
anather slement from tne list of
elements to view

The current viewing
element == the final node of the
scheme.

Yes

The current viewing element = a

random next element of the scheme.

I

Yes

Currant viewing slement =

cument element of the scheme:

T

The current viewing slement =

the next node in the amay of all
nedes in the scheme

The final node of the
segment = the current viewing
element

Have all nodes of the
scheme been viewed?

Fig. 4. Block diagram representation of the first part of the improved recursive

algorithm — searching for segment boundaries

Improved software system for calculating the reliability indicators of complex technical systems

‘ Start

Current element = starting node of the diagram;
List of traverzed elements in the diagram =[J;
Current reliability expression="";

Start of the current segment = current element;
End of the current segment = corresponding end
node from the segment boundaries dictionary.

List of traversed elements in the

Yes

Is the current
expression of functionality
empty?

k.

297

diagram += current element;

The current expression of
operability += "AND" + "Name
of the current module”

The current expression of
operability = "Name of the
current module™

The current element = the next
element of the scheme

|

Current element == end
node of the diagram?

Is the current element
a module?

Qutgoing connections
of the cument node = 1

Current segment = the first branch
segment;
List of fraversed segments = null;

List of traversed segments +=

Current element = next
element of the scheme

current segment;

Recursive call for each
branching segment

ave all zegments been
fraversed?

The current node = the end node of
the segment;

The current operational expression
+="0R" + "Refurned operafional
expression value of the segment”

Fig. 5. Block diagram representation of the second part of the improved recursive algorithm —
recursive traversal and formulation of the operational condition

298 M. Seniv, S Zdebskyi

» C @ localhost3000

Fig 6. Implementation of the circular graph using React and ReactFlow

This page features a main area displaying the structural diagram of the system, with modules that
have either a working state or a repair state (Fig. 7). There is also a menu on the page that allows
navigation back to the main page or to the neighbouring states page. The neighbouring states page displays
a graph containing three levels of elements: parent, current, and child (Fig. 8).

Fig. 7. Detailed information about the state

< C @ localhost3000/stateConnections

110,
28 21
Lo it

Fig. 8. Graph of neighbouring states

Improved software system for calculating the reliability indicators of complex technical systems 299

Animated arrows are designed to indicate the direction of state transitions. If the user double-clicks
on an element of the neighbouring states graph, they will be able to navigate to the detailed information
page for the selected state.

To verify the performance of this software, a series of experiments were conducted on reliability
structural diagrams of various sizes and connection types (parallel and sequential). The performance of the
improved recursive algorithm was compared with the method presented in [12].

Table4

Comparison of performance for thereliability condition formulation:
method [12] vs. improved recursive algorithm

Sequential connection Parallel connection
Number of Improved recursive Improved recursive
modules Method [12], s . Method [12], s .
algorithm, s algorithm, s
1 0.0133530 0.0079854 0.0143543 0.0083983
2 0.0086102 0.0049453 0.0115355 0.0095868
4 0.0123576 0.0074434 0.0123048 0.0112578
8 0.0150145 0.0076454 0.0100280 0.0130272
10 0.0091833 0.0102026 0.0144573 0.0109297
15 0.0132885 0.0082445 0.0146141 0.0142705
20 0.0119692 0.0135530 0.0127616 0.0175789
30 0.0102165 0.0152295 0.0173087 0.0349637
50 0.0126795 0.0173358 0.0177975 0.1149013
75 0.0142591 0.0186773 0.0368207 0.4140173
100 0.0147048 0.0193757 0.0756552 0.8046696
150 0.0150907 0.0241673 0.1644606 2.7622245
200 0.0157585 0.0197763 0.3671252 6.1815201
350 0.0187226 0.0473787 1.8161816 34.7158770
500 0.0251735 0.0849076 5.4817717 99.6446662
600 0.0305666 0.1174315 9.2060068 168.5600439
620 0.0348336 0.1257890 10.7672005 188.7232709
640 0.0427135 0.1269443 11.7864979 219.2872035
650 - - - -

According to the results of the experiments conducted, the improved recursive algorithm
demonstrates better performance on small-scale diagrams (up to 10 elements for sequential connections
and up to 15 elements for parallel connections). These results are graphically presented in Fig. 9.

The dependence of execution time on the number

of elements (sequential connection of elements) The dependence of execution time on the number

of (parallel ion of

250

0,08 150

0,06
100
0,04
0,02 - g = —
e — =

0 U R SRS
0 -

0 00 2) 0 600 30
4] 100 200 300 400 500 600 700 500 600

200
—e— Method [12], s

300 400

s~ Method [12], s Recursive algorithm, s Recursive algorithm, s
. 3

Fig. 9. Comparison of the performance for formulating the reliability condition between
method [12] and the improved recursive algorithm

300 M. Seniv, S Zdebskyi

Additionally, testing of the performance speed for constructing circular and n-ary graphs using the
developed software was conducted (Table 2).

Table 2
Comparison of performance speed in forming circular and n-ary state graphs
Number of Sequential connection Parallel connection
modules Circular graph, s. N-ary graph, s. Circular graph, s. N-ary graph, s.
1 0.0078 0.0017314 0.0078 0.0017314
2 0.009 0.0016174 0.0189 0.0025893
3 0.014 0.004095 0.0423 0.0106329
4 0.024 0.0084683 0.1471 0.0503639
5 0.0512 0.0199266 0.5062 0.2615199
6 0.1067 0.0461575 1.8173 1.8756702
7 0.2205 0.1100145 7.136 11.3831539
8 0.451 0.3041155 - -
9 0.9026 0.737526 - -
10 2.7244 2.1262877 - -
11 6.2412 5.9316393 - -
12 18.1451 21.1073882 - -

As evident from the experiments, the formation of circular and n-ary graphs have similar
performance values, although with an increase in the number of elements, the formation of the n-ary graph
is in some cases slower. Corresponding results are shown in Fig. 10.

The dependence of state graph formation time

.) on the number of elements (parallel connection of elements).
The dependence of state graph formation time on the

number of elements (sequential connection of elements)

25 10

20 8
15 / 6
10 4

) = " i —

1 2 3 4 5 6 T 8 9 10 11 12 1 2 3 4 5 6 7

—a— Circular graph, s N-ary graph, s —a— Circular graph, s @~ N-ary graph, s

Fig. 10. Comparison of the performance of forming circular and n-ary state graphs

Conclusions

The improved software system for calculating the reliability indicators of complex technical systems
has been implemented. The system was enhanced through the modification and software implementation
of a recursive algorithm for formulating the operability condition and displaying a circular state/transition
graph. Using the implemented system, it is possible to automate the construction of reliability block
diagrams for technical systems, calculate the operability condition, and visualize this data using either n-
ary or circular graphs.

Methods and tools for calculating the reliability indicators of complex technical systems, particularly
software systems, have further developed, especially the algorithms and methods for automated
formulation of the condition of operability. Additionally, tools for visualizing state/transition graphs for
analysing reliability block diagrams have seen advancements. Furthermore, enhancements in the

Improved software system for calculating the reliability indicators of complex technical systems 301

visualization tools for state/transition graphs have been implemented, allowing for improved analysis of
reliability block diagrams.

The practical significance of the obtained results lies in the ability to use the improved recursive
algorithm for the automated formulation of the condition of operability of reliability block diagrams. Its
application on small-sized diagrams (up to 10 elements) yields a time gain of approximately 10 % in the
case of sequential connections and about 32 % in the case of parallel connections.

The advanced software solution enables automated calculation of reliability indicators for software
systems of any complexity level and reduces the influence of the human factor in the process of reliability
design.

References

1. TrustRadius. (n.d.). PTC Windchill overview. https://www.trustradius.com/products/ptc-windchill/
reviews?qs=pros-and-cons#overview.

2. ALD Service. (n.d.). ALD reliability and safety software. https://aldservice.com/Download/
download-reliability-and-safety-software.html.

3. ReliaSoft. (n.d.). BlockSim application introduction. https://help.reliasoft.com/blocksim21/
content/current_application_intro.htm.

4. lsograph. (n.d.). Isograph AttackTree software. https://www.isograph.com/software/attacktree/.

5. Pérez-Rosés, H. (2018). Sixty years of network reliability. Mathematics in Computer Science, 12(3), 275 —
293. https://doi.org/10.1007/s11786-018-0345-5.

6. Song, K., Kim, Y. S, Pham, H., & Chang, I. H. (2024). A software reliability model considering a scale
parameter of the uncertainty and a new criterion. Mathematics, 12(11), 1641. https://doi.org/10.3390/math12111641.

7. Kumar, A. M. (2022). A Neuro-Fuzzy hybridized approach for software reliability prediction. JUCS —
Journal of Universal Computer Science, 28(7), 708-732. https://doi.org/10.3897/jucs.80537.

8. Lin, J., & Huang, C. (2022). Queueing-Based simulation for software reliability analysis. IEEE Access, 10,
107729-107747. https://doi.org/10.1109/ACCESS.2022.3213271.

9. Kim, Y. S,, Pham, H., & Chang, I. H. (2023). Deep-Learning Software Reliability Model using SRGM as
activation function. Applied Sciences, 13(19), 10836. https://doi.org/10.3390/app131910836.

10. Haque, M. A., & Ahmad, N. (2024). A logistic software reliability model with Loglog fault detection rate.
Iran Journal of Computer Science. https://doi.org/10.1007/s42044-024-00192-x

11. Haque, M. A., & Ahmad, N. (2022). A software reliability model using fault removal efficiency. Journal
of Reliability and Statistical Studies. https://doi.org/10.13052/jrss0974-8024.1523.

12. Yakovyna, V. S., Seniv, M. M., Symets, I. I, & Sambir, N. B. (2020). ALGORITHMS AND
SOFTWARE SUITE FOR RELIABILITY ASSESSMENT OF COMPLEX TECHNICAL SYSTEMS. Radio
Electronics, Computer Science, Control, (4), 163-177. https://doi.org/10.15588/1607-3274-2020-4-16.

302

M. Seniv, S. Zdebskyi

YAOCKOHAJIEHA ITPOI'PAMHA CUCTEMA
PO3PAXYHKY ITOKA3HUKIB HAIIHHOCTI
CKIIAJHUX TEXHIYHUX CUCTEM

Makcum Cenis?, Ctenan 31e6chKuii?

Harionansuuit Yuisepcuter “JIbBiBebka [TomiTexHika”,
kadenpa nporpamuoro 3abesneueHns, JIpBiB, YkpaiHa,
LE-mail: maksym.m.seniv@Ipnu.ua, ORCID: 0000-0003-1044-4628
2E-mail: stepan.zdebskyi.mnpzm.2024@Ipnu.ua, ORCID: 0009-0000-4454-2539

© Cenie M., 30ebcoru C., 2024

IIpoananizoBaHo JgiTepaTypHi Jukepesna, B AKHUX AOCTIUKeHO iCHYlO4i MeToaM Ta 3aco0Hu po3pa-
XYHKY NOKA3HHKIB HATIiHOCTI CKJIaJHHX TeXHiYHHX (30KpeMa, NMpPorpamMHuX) cucreM. Moneiasb Ha-
OiHHOCTI cy4acHOi KOMIIJIEKCHOI TeXHIYHOI CHCTEeMHU 4YacTo 300paxKaioTh y BUIJIAAL 0JOK-cXeMH HAaiii-
Hocrti (reliability block diagram, RBD), Bona mMo:ke MiCTHTH JeKilbKa THCSY eJIEMEHTIB, IKi M0O4epProBo
nepeGyBalOTh y Pi3HUX cTaHAX (HANPHUKJIAJA, pOG0UMii, BilMoBJIeHHi, BinHOBIOBaHWii). Lle npu3BoauTh
10 3HAYHOTO MPOCTOPY MOXKJIMBHUX CTaHIiB y BinmoBimmiii MapkoBcehkiii mogeni. IloBexinky HagilinocTi
CHCTeMH TIPUHHATO ONMHMCYBATH rpadom, BY3JH SIKOTO BiINOBiIalOTh CTaHAM cHCTeMH, a pedpa —
MOXKJIUBHM IlepexoJaM 3 OAHOro cTaHy B iHmmii. /{1 aBToMaTH3amii po3paxyHKy NMOKAa3HHUKIB Haiii-
HOCTI CKJIAJHMX TEeXHIYHMX CHCTeM BUKOPHCTOBYETHCH HH3Ka mporpaMHux npoaykris. Ilpore mum
NPOAYKTAM NPHTAMAHHA HH3Ka HeNOJIKiB, cepel SAKHX. CKJIAJHICTh BIPOBAJ’KEHHS Yy MNpoLecH
NMPOeKTYBAaHHAI i po3po0KH; 3HAYHi BUTpPATH Ha NpuA0aHHA JileH3ili Ta MiAroTOBKY mepcoHaNy;
BiICYyTHICTB cyMicHOCTI i3 IHIIMMM NIPOAYKTAMH aHAJI3Y HANiHHOCTI Ta yNPaBJIiHHA KUTTEBUM IUKJIOM;
BiIcyTHicTh iHCTPpyMeHTIB 1Jisi podoTH i3 6a3amMm aaHuX Tomo. BinbuiicTe 3acTapinumx mpoaykTiB €
desktop-mogaTkamMm 3 HeIOCTATHLO 3pYYHUM rpadidyHuM intepdeiicom. OcHoBHA MeTa Wi€i poGoTH —
po3podka yI0CKOHAJIEHOI NMPOrpaMHOiI CHCTeMH, IO BKJIKWYa€e Moaugikamiio Ta iMmiaeMeHTaUil0
PEeKYpPCHBHOro aaropurmMy (opMyBaHHSI YMOBHU Npane3aTHOCTI Ta BizyaJisauii kpyrosoro rpaga cra-
HiB/mepexo/iB. 3a 10MOMOr0I0 YI0CKOHAJIEHOI CHCTEMH MOKHA 3[iliCHIOBATH aBTOMATH30BaHy NOOYI0BY
0JIOK-cXeM HaAIHOCTI CKJIagHUX TeXHIYHUX, 30KpeMa, NMPOrPaMHUX CHCTEM, OOYMCIEHHS YMOBH
NMpane3JaTHOCTI 3a JONMOMOIo0 YIO0CKOHAJIEHOr0 PEeKYPCHBHOIO AJITOPHTMY Ta MeTOAY BH3HAYEHHS
YMOBH TMpane31aTHOCTi, BU3HAYEHHs CTaHiB cucTeMH i Bidyani3zamiio 3a gomoMorow N-apHoro aoo
Kpyrosoro rpaga. Takox cucreMa Hajga€e iHCTPYMEHTH IJisl O0YMCJIEHHSI TOKA3HHUKIB HaIilHOCTI:
KOe(ili€HTH TOTOBHOCTI Ta NMPOCTOI0, YaC HANPANIOBAHHA HA BiIMOBY, mapamMeTpH NOTOKY BiIMOB
TOIIO. Y/IOCKOHAJIEHHI MPOTrPAMHHII KOMILIEKC AA€ MOKJIHBICTH aBTOMATH30BAHOI0 PO3PAXyHKY MO-
Ka3HUKIB HaAifHOCTI NPOrpamMHUX CHCTeM [OBiIBHOTO PIiBHA CKJAIHOCTI Ta 3MEHINYE BILUINB
JIOACHKOr0 (paKkTOpy B NMpoueci HAAIHHICHOT0 MPOEeKTYBAHHS.

Kurouosi cjioBa: nporpamue 3a0e3neveHHst; 0J10K-cxeMa HaAiiiHOCTI; HaJiliHiCHe NPOeKTYBaHHS;
rpad ctaHiB Ta nepexoiB.

