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This article presents an integrated Advanced Driver Assistance System (ADAS) that combines 
several key functional modules, such as collision warning, lane detection, traffic sign recognition, and 
pothole detection, which are implemented using modern deep learning models, particularly YOLOv8n. 
The system is optimized for devices with limited computational resources, such as Raspberry Pi or 
NVIDIA Jetson Nano, by employing a modular architecture and parallel data processing to ensure real-
time performance. This research provides an overview of existing ADAS solutions and proposes new 
approaches that significantly enhance the efficiency of such systems. Key innovations include an 
efficient approach to lane detection based on object detection models, real-time traffic sign recognition 
with a flexible extraction and classification process, and a novel pothole detection system optimized for 
dashcam recordings. Additionally, the proposed driver alert system, which uses an LED strip, allows for 
intuitive hazard awareness without distracting the driver. Preliminary results confirm satisfactory 
detection accuracy across all components, although further optimization is required for successful 
deployment on low-resource devices. 

Keywords: intelligent driver assistance system, object detection, deep learning, real-time, 
YOLOv8n, lane detection, traffic signs, potholes.  

 
Introduction. Relevance of the Topic 

Advanced Driver Assistance Systems (ADAS) play a critical role in improving road safety by 
assisting drivers with real-time information. Informational systems within ADAS are particularly 
important, as they provide the driver with critical alerts and data without directly intervening in vehicle 
control. Unlike autonomous driving systems, which involve complex issues of safety, responsibility, and 
integration, informational systems place the responsibility in the hands of the driver, enhancing situational 
awareness. The primary goal is to provide drivers with accurate, real-time information that they may 
otherwise overlook, improving decision-making and reaction times on the road. The continuous 
improvement of driving safety remains a global priority, particularly in the development of ADAS 
solutions. While full automation promises to eliminate human error, current technology still relies heavily 
on human drivers. Therefore, the need to refine and enhance ADAS informational systems is essential to 
reducing accidents and improving driver awareness. By providing timely and precise information on 
potential hazards, ADAS systems can greatly enhance road safety, particularly if they are made accessible 
and cost-effective for all vehicle types. 
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Problem Statement 
Despite the existing advancements in ADAS technologies, certain subsystems, such as traffic sign 

recognition and pothole detection, remain underdeveloped or underutilized in real-time applications. 
Additionally, lane detection, vehicle detection, and pedestrian detection systems often require significant 
computational resources, limiting their deployment on hardware with restricted processing capabilities, 
such as those found in low-cost vehicles. The challenge lies in developing an integrated system that can 
perform these tasks efficiently on devices with limited computational power, without sacrificing accuracy 
or speed. 

 
Objectives of the Research 

The objective of this article is twofold: to explore and evaluate existing methods within ADAS 
systems, and to propose new, optimized approaches to improve their efficiency and accuracy. Specifically, 
we focus on improving lane detection, traffic sign recognition, and pothole detection by employing deep 
learning models like YOLOv8n. This research aims to create scalable and efficient ADAS informational 
systems that can operate on resource-constrained devices, making them accessible for a wide range of 
vehicles. Additionally, the article introduces a modular, parallel-processing system architecture to enhance 
real-time performance, laying the groundwork for future feature expansions. 

 
Literature Review 

The development of Advanced Driver Assistance Systems (ADAS) has seen significant 
advancements in lane detection, object recognition, and road surface monitoring, which are critical for 
improving driver awareness and safety. Lane detection, a fundamental ADAS component, has faced 
challenges in non-ideal conditions such as poor weather and irregular road markings. Kaur and Kumar [1] 
identified the limitations of traditional methods like the Hough transform, which struggle with accuracy in 
real-world environments. To address these issues, Rachel et al. [3] introduced a CNN-based approach that 
enhances detection accuracy, achieving over 97% accuracy even in complex conditions. Saha et al. [2] 
proposed a flood-fill technique that adapts well to varying daylight but still faces limitations under extreme 
conditions. 

Object detection plays a pivotal role in ADAS, particularly for collision warning systems. Murthy et 
al. [4] utilized YOLOv5 to develop a real-time object detection framework capable of efficiently detecting 
pedestrians, vehicles, and other road obstacles. This method outperforms older models like R-CNN in 
terms of both speed and accuracy, making it better suited for real-time applications where quick responses 
are critical [4]. 

Traffic sign recognition is another essential ADAS function, as it ensures that drivers receive timely 
information. Golgire [8] explored the use of CNNs for traffic sign recognition, demonstrating their ability 
to handle poor visibility and varying light conditions with minimal manual preprocessing. This research 
showed that CNNs, when optimized through hyperparameter tuning, can operate efficiently on limited-
resource hardware, which is crucial for real-time ADAS applications [8]. However, in lower-cost ADAS 
solutions, real-time traffic sign detection is less common, as many rely on preloaded databases instead of 
live detection [19]. 

Pothole detection, a more recent addition to ADAS, addresses the need for road surface monitoring. 
Buza et al. [5] developed a cost-effective method using image processing and spectral clustering, achieving 
an 81 % accuracy in identifying pothole regions. Joe et al. [6] took this further by integrating pothole 
detection with Tiny YOLOv3 into a mobile application, enabling both municipalities and citizens to 
monitor road conditions in real-time. However, challenges in achieving consistent accuracy under varied 
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lighting conditions remain [6]. Furthermore, smartphone-based ADAS options for pothole detection also 
exhibit limitations, indicating a gap in real-time capability compared to more advanced OEM systems [19]. 

In summary, these studies highlight the evolution of ADAS technologies, where traditional methods 
provide foundational tools, and AI-driven models such as CNNs and YOLO introduce significant 
improvements in real-time performance, accuracy, and adaptability. Although progress has been made, 
there are still challenges in optimizing these systems for resource-constrained environments, where 
maintaining both speed and accuracy is critical. While higher-end models offer robust ADAS 
functionalities, there remain near-market gaps in real-time detection and reliability, especially in affordable 
or aftermarket ADAS solutions [17–19]. 

 
Research Results 

Collision Warning System 
The collision warning system is an important part of Advanced Driver Assistance Systems (ADAS) 

that helps keep drivers safe by giving real-time alerts about possible collisions. This system uses a mix of 
sensors, visual tech, and machine learning models to detect obstacles and figure out the chance of a 
collision, letting the driver know when they need to act. In this section, we’ll focus on visual technologies 
and explain the tools, data flow, and algorithms used, with a special look at machine learning and model 
structures like YOLO. 

 
1.1.1. Technologies and Hardware Used in Collision Warning Systems 

The backbone of any collision warning system is its sensor suite. While some systems may 
incorporate radar or LiDAR sensors, we focus on camera-based visual technologies due to their cost-
effectiveness and adaptability to various environments. A monocular camera mounted on the front of the 
vehicle is commonly used to capture real-time video streams, which serve as the primary input for 
detecting obstacles and estimating distances. In more advanced systems, stereo cameras can provide depth 
information, but monocular setups, combined with machine learning, offer a simpler yet effective solution. 

Key hardware components include a monocular camera, which captures images or video in real-
time and serves as the primary data source. A processing unit, such as an NVIDIA Jetson, handles the 
real-time data processing using machine learning models. Finally, the display or audio system provides 
visual or auditory warnings to the driver when a potential collision is detected. 

 

1.1.2. Data Flow from Input to Warning 
In a collision warning system, the process starts with a camera that takes continuous video of the 

road ahead, which is the main source of information. This raw video goes through some basic processing 
steps, like adjusting colors, resizing, and reducing noise, so the images are clearer and ready for analysis. 
After this, the images go into an object detection model, like YOLO, which looks at each frame and finds 
objects, like cars, people, and other obstacles, and keeps track of them. 

After detecting objects, the system works out the distance between the vehicle and each object it 
finds. This can be done with advanced machine learning models for depth estimation or simpler methods 
like perspective transformation, especially if there’s just one camera. Once the distances are calculated, the 
system checks how likely a collision is by looking at each object's distance, speed, and path compared to 
the vehicle's own movement. 

If the system thinks a collision might happen, it sends a warning to the driver. This alert could be 
visual, like a symbol on the dashboard, or a sound, like a beep or a voice message. 
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Fig. 13. Data Flow Diagram for Collision Warning System  

(in Yourdon and Coad notation) 
 

1.1.3. Object 
Detection with YOLO 

Object detection is at the heart of the collision warning system. The You Only Look Once (YOLO) 
model is one of the most widely used architectures due to its efficiency in detecting objects in real-time. 
YOLO divides an image into a grid and predicts bounding boxes and class probabilities for each grid cell 
simultaneously, allowing for rapid processing of video frames without sacrificing accuracy. 

YOLO is the ideal candidate model for collision warning due to several key factors. First, speed is a 
significant advantage, as YOLO can process images quickly, achieving up to 60 frames per second on 
high-end GPUs, which is critical for real-time applications like collision warning. Second, efficiency 
makes YOLO stand out; as a single-stage detector, it is computationally less intensive compared to two-
stage object detectors like R-CNN, while still maintaining high detection accuracy. Finally, robustness is 
another strength, as YOLO can detect a wide range of objects, such as vehicles, pedestrians, and road 
obstacles, even under various lighting and weather conditions. 

The structure of YOLO includes three main steps. First, the input image is split into a grid of cells. 
Next, for each cell, YOLO predicts a few bounding boxes along with class probabilities. Finally, it uses a 
process called non-max suppression to remove overlapping boxes, keeping only the predictions with the 
highest confidence. 

YOLOv8 demonstrates significant efficiency when deployed on resource-constrained devices such 
as the Raspberry Pi 4, making it an ideal choice for embedded computer vision tasks. The Raspberry Pi 4, 
powered by the Broadcom BCM2711 SoC and equipped with up to 8GB of LPDDR4 RAM, can run 
YOLOv8 models at satisfactory frame rates. Benchmark tests conducted on the Raspberry Pi 4 using the 
YOLOv8n model in NCNN format have shown an inference time of 414.73 ms per image, while other 
formats such as PyTorch exhibit slower performance. The table below provides an overview of the 
inference times for various formats: 

Table 4 

Inference times for YOLOv8n on Raspberry Pi 4 

Format mAP50-95(B) Inference Time (ms/im) 
PyTorch 0.6092 1068.42 
ONNX 0.6092 560.04 

OpenVINO 0.6092 534.93 
NCNN 0.6092 414.73 
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Among the tested formats, NCNN provides the fastest inference times on the Raspberry Pi 4, 
making it the most suitable format for real-time applications. This optimization is particularly beneficial 
for object detection tasks in ADAS systems, where timely responses are critical. 

 
1.1.4. Distance Estimation for Collision Warning 

One of the key tasks for collision warning systems is to estimate the distance between the vehicle 
and detected objects. A widely used approach for distance estimation is perspective transformation. This 
method leverages the geometric properties of a monocular camera to estimate distances based on the size 
and position of detected objects in the image. It requires an initial calibration of the camera setup (e.g., 
height of the camera, focal length) but once calibrated, it is faster and less resource-intensive than deep 
learning-based methods. 

The process of perspective transformation in image processing is essential for applications such as 
distance estimation, where a top-down view of the road is required for accurate calculations. To achieve 
this, a perspective transformation is applied to the original image using a predefined set of points. This 
section outlines the mathematical foundation of the transformation process, with a focus on its application 
to camera-based systems. 

Calibration and Four-Point Mapping: The transformation begins with the calibration of the camera 
system, which involves identifying four key points in the image that correspond to known real-world 
coordinates. These four points form the basis of the perspective transformation. Let the points in the image 
plane be represented by:   = (  ,  ),    = (  ,  ),    = (  ,  ),    = (  ,  )   (1) 

These points are mapped to a set of target points in the transformed plane, denoted by:  ′ = ( ′ , ′ ),   ′ = ( ′ , ′ ),   ′ = ( ′ , ′ ),   ′ = ( ′ , ′ )  (2) 

The objective is to construct a matrix that maps the points    to  ′ , thereby transforming the 
perspective of the image. 

Homography Matrix Construction: The relationship between the original points   and the 
transformed points  ′ is governed by a homography matrix  , which is a 3 × 3 matrix. The transformation 
can be described by the equation:  x'y'1 =H xy1 ,      (3) 

where   is defined as:  =  ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  1  .      (4) 

This matrix maps the coordinates from the input image to the transformed plane. The transformation 
is nonlinear due to the presence of ℎ   + ℎ   + 1 in the denominator, ensuring that straight lines remain 
straight, but angles and lengths are not preserved, resulting in a change in perspective. 

Solving for the Homography Matrix: The matrix   can be computed by solving a system of linear 
equations. For each pair of corresponding points   ↔  ′ , two equations are derived:  ′ = ℎ    + ℎ    + ℎ  ℎ    + ℎ    + 1 ,                                                               (5) 

 ′ = ℎ    + ℎ    + ℎ  ℎ    + ℎ    + 1 .                                                               (6) 
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These equations can be expanded into a system of eight linear equations with eight unknowns (the 
elements of  ). The system can be expressed as: 

⎝⎜
⎛    1 0 0 0 − ′   − ′   0 0 0     1 − ′   − ′   ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮    1 0 0 0 − ′   − ′   0 0 0     1 − ′   − ′   ⎠⎟

⎞
⎝⎜
⎜⎜⎜⎜
⎛ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  ℎ  ⎠⎟

⎟⎟⎟⎟
⎞ = ⎝⎜

⎛ ′  ′ ⋮ ′  ′ ⎠⎟
⎞

.  (7) 

Once the homography matrix   is solved, it can be applied to transform the entire image. 
Applying the Perspective Transformation: With the homography matrix   computed, the 

transformation of any point ( , ) in the original image can be carried out using:   = ℎ   + ℎ   + ℎ  ℎ   + ℎ   + 1 ,                                                                     (8) 

  = ℎ   + ℎ   + ℎ  ℎ   + ℎ   + 1 .                                                                 (9) 

This transformation is applied to each pixel in the image, resulting in a new perspective where the 
camera’s view is warped into a top-down, bird’s-eye view. This is especially useful for distance estimation 
in ADAS systems, as it simplifies calculations by creating a linear relationship between pixel coordinates 
and real-world distances. 

 

 
Fig. 2. Getting distance information from perspective transformation [13] 
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1.1.5. Object Tracking and Time to Collision (TTC) 
Object tracking is essential in maintaining awareness of detected objects over time, especially for 

collision warning systems. High-speed trackers like the Kalman filter and SORT are often used for their 
ability to efficiently predict object motion in real-time. These algorithms help the system continuously 
estimate the position and velocity of dynamic objects across consecutive frames, enabling accurate 
predictions of potential collisions. 

In an ego vehicle, tracking focuses on determining whether a detected object’s trajectory will 
intersect with the vehicle’s path. If an object is moving toward the vehicle, the system calculates the Time 
to Collision (TTC), which is the estimated time before impact. TTC is computed using the formula: TTC = DV , ,                                                                            (10) 

where   is the distance between the vehicle and the object, and    is the relative velocity. If the TTC falls 
below a critical threshold (e.g., 2 seconds), a warning is issued. 

By combining tracking algorithms and TTC calculation, the system ensures timely and accurate 
collision warnings, significantly improving road safety. 

 
1.1.6. Delivering the Warning to the Driver 

The last part in the collision warning system is giving a warning to the driver. The system must 
make sure the alerts show up at the right time and in a way that catches the driver’s attention, but without 
distracting too much. The kind of warning depends on how serious the danger is and what’s happening on 
the road at that time. 

For visual alerts, the system might use a heads-up display (HUD) or show something on the 
dashboard to mark where the object is, with a warning sign. It could also show extra info, like time left 
before a possible crash or the speed of the object, so the driver gets all the important details. For audio 
warnings, the system might make beeping sounds or use voice alerts to warn the driver. These sounds are 
useful because they catch the driver’s attention fast, which is important when a quick reaction is needed. 

It is crucial for the system to minimize the number of false positives, as frequent unnecessary 
warnings can lead to driver fatigue or desensitization to the alerts. To achieve this, the system’s algorithms 
must be carefully calibrated to balance sensitivity with accuracy, ensuring that warnings are only provided 
when the risk of collision is significant. Additionally, integrating multiple forms of alerts (visual, auditory, 
and haptic) can enhance the system’s effectiveness by providing the driver with clear, multi-sensory 
feedback in the event of an imminent collision. 

 
Lane Detection System 

Lane detection is a fundamental component of Advanced Driver Assistance Systems (ADAS), 
responsible for identifying the lane boundaries to assist the vehicle in maintaining its position on the road. 
There are two primary approaches to lane detection: the conventional computer vision (CV) approach and 
the deep learning (DL) approach. Both methods have their respective advantages and challenges, and this 
section will discuss these approaches in detail. 

 

1.1.7. Conventional Computer Vision Approach 
The conventional CV approach relies on classical image processing techniques to detect lanes. The 

key stages of this approach involve image filtering, thresholding, and line-fitting algorithms to derive the 
lane boundaries. This method is computationally efficient and suitable for real-time applications but may 
struggle in complex or noisy environments. 
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In the conventional approach, the first step is preprocessing the input image to enhance lane features 
while reducing noise. Preprocessing typically involves multiple stages, including undistortion, cropping, 
blurring, and edge detection. Each of these steps is critical in preparing the image for lane detection. 

 
1.1.1.1. Undistortion 

One of the major challenges in lane detection is correcting for the distortion caused by the camera’s 
field of view (FOV). Wide-angle lenses, often used in vehicle cameras, introduce radial and tangential 
distortion, causing straight lines to appear curved. To correct this, undistortion techniques are applied using 
camera calibration matrices. Given a distortion matrix  , the undistortion process maps each pixel 
coordinate ( dist, dist) to a corrected coordinate ( undist, undist) based on a camera matrix   (lane-
detection-1):   undist undist1  =       dist dist1  ,                                                                     (1) 

where   represents the distortion coefficients, and   is the intrinsic camera matrix derived from camera 
calibration. Correcting the distortion ensures that lane lines appear straight and undistorted, which is 
essential for accurate lane detection. 

 
1.1.1.2. Cropping 

After undistortion, the next step is to focus on the region of interest (ROI), which is the portion of 
the image where the road is most likely to be located. This involves cropping the image to exclude 
unnecessary parts of the scene (e.g., sky, buildings) and focusing only on the road surface. Instead of 
simple cropping, the ROI is selected based on the geometry of the road, and pixels outside the expected 
road area are set to zero. This reduces the amount of irrelevant data that the algorithm processes, improving 
computational efficiency. 

Given an image with height   and width  , and assuming the bottom half of the image contains the 
road, the cropping operation can be defined as: 

ROI( , ) =   ( , ) if  >   0 otherwise
,    (12) 

where  ( , ) is the pixel intensity at coordinates ( , ), and all values outside the ROI are set to zero. 
 

1.1.1.3. Blurring and Edge Detection 
Before detecting lane lines, the image is often smoothed to reduce noise and enhance the lane 

features. Gaussian blurring is commonly used for this purpose, where each pixel is replaced by the 
weighted average of its neighboring pixels. The Gaussian filter is defined as: 

 ( , ) = 12   exp −  +   2   ,                                                     (13) 

where   is the standard deviation of the Gaussian kernel. The result is an image with reduced noise, 
making it easier to detect edges without interference from small-scale variations in intensity. 
After blurring, edge detection is performed to identify the boundaries of lane lines. The Sobel filter is 
frequently used for this purpose, where gradients in both the x and y directions are computed:   = ∂ ∂ ,    = ∂ ∂  .                                                           (14) 
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The magnitude of the gradient is then calculated to highlight the edges in the image: 

 =     +    .      (15) 

This step emphasizes the lane boundaries by enhancing the vertical edges, which are essential for 
detecting lanes. 

 
1.1.1.4. HSL and Gradient Thresholding 

To further isolate lane lines, thresholding is applied to the processed image. A combination of 
gradient thresholding and color-based thresholding in the HSL (Hue, Saturation, Lightness) color space is 
commonly used to focus on lane markings. The color thresholding in the HSL space highlights white and 
yellow lane lines, which are typically distinct from the road surface:  HSL(ℎ,  ,  ) =  1 if ℎ ∈ [    ,    ] and  ∈ [    ,    ]0 otherwise

,  (16) 

where ℎ,  ,   are the hue, saturation, and lightness components of the pixel, and     ,    ,    ,     are 
the thresholds that define the lane color range. 

Finally, gradient thresholding is applied to focus on the high-intensity edges corresponding to lane 
lines. This step further reduces noise and non-lane objects in the image, ensuring that only lane-related 
features are passed on for further processing. 

 
1.1.1.5. Sliding Window Search 

The sliding window search technique is an efficient method used in lane detection to track lane lines 
across consecutive frames in video sequences. Once the lane lines are detected in an earlier frame, this 
information is used to guide the search in subsequent frames. A window is placed around the previously 
detected lane line centers, and the algorithm searches for lane line pixels within this window from the 
bottom to the top of the image. This method significantly reduces the search space, leading to faster 
processing and increased accuracy. 

 

 
a                                                                 b 

Fig. 3. Sliding Window Search for detecting primary stage of lanes from perspective transform image: a) perspective 
transform image; b) sliding window search on perspective transform image [15] 
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The pixels corresponding to the left and right lane lines are identified using their x and y 
coordinates. Once these pixels are detected, a second-order polynomial is fitted to the data to represent the 
lane lines:  ( ) =    +   +  .     (17) 

In this equation,  ( ) is used rather than  ( ), because in the warped image, the lane lines are 
nearly vertical. This orientation can result in multiple  -values corresponding to the same  -value, making  ( ) a more appropriate representation. The use of this polynomial fit allows for the lane lines to be 
tracked smoothly across frames, even if the road or camera conditions change, and ensures that the system 
maintains accurate lane detection over time. 

 
1.1.1.6. Line Fitting and Outlier Detection 

Once the binary image is obtained, lane lines are detected using line-fitting algorithms, such as the 
Hough Transform, which identifies lines in the image by transforming edge points into the Hough space. 
The Hough Transform is defined as:   =  cos +  sin ,     (18) 

where   is the distance from the origin to the line, and   is the angle between the x-axis and the line. Points 
in the Hough space that intersect frequently are considered to be part of a line. 

Additionally, machine learning algorithms can be used to detect outliers in the lane points. By 
analyzing characteristics like color and position, the system can filter out noise and ensure accurate lane 
detection. 

 
1.1.8. Deep Learning Approach 

The deep learning approach to lane detection leverages neural networks, particularly segmentation 
models, to identify lanes. In this approach, a convolutional neural network (CNN) segments the input 
image into lane and non-lane regions, allowing the system to focus on relevant parts of the scene. 

 
1.1.1.7. Segmentation Models 

The segmentation model divides the image into several regions and labels each pixel according to 
whether it belongs to a lane line. The most common architectures for this task include U-Net and Fully 
Convolutional Networks (FCNs). These models are trained on large datasets, allowing them to generalize 
to a wide range of driving conditions. The output of the segmentation model is typically a binary mask, 
where pixels corresponding to lanes are set to 1, and all other pixels are set to 0. This output can then be 
processed similarly to the conventional CV approach, with line-fitting algorithms used to derive the final 
lane boundaries. 

 
1.1.1.8. Efficiency and Model Selection 

While deep learning models offer greater accuracy, especially in challenging conditions, they require 
more computational resources than conventional CV methods. However, recent advances in model 
optimization, such as model pruning and quantization, have enabled the deployment of lightweight 
segmentation models on embedded systems like the Raspberry Pi. 
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1.1.9. Comparison of Approaches 
The conventional CV approach is computationally less demanding and can perform well under 

controlled conditions, but it often struggles in complex environments with varying lighting or weather 
conditions. On the other hand, the deep learning approach excels in such scenarios due to its ability to learn 
from vast amounts of data and generalize across different environments. However, it requires more 
computational power and may not be as suitable for real-time applications on resource-constrained devices 
without optimization. 

 
1.1.10. Proposed Approach: Object Detection for Lane Detection 

In this approach, we propose the use of object detection (OD) models, specifically the YOLO 
architecture, to solve the problem of lane detection. The method leverages labeled datasets where lanes are 
annotated as a set of points. Instead of treating lane detection as a segmentation task or a traditional line-
fitting problem, the proposed solution applies object detection to predict lane points through bounding 
boxes. 

The process begins with taking a labeled dataset where the lanes are annotated as a series of discrete 
points. For each labeled point, a bounding box (BB) is created with the point at its center. The size of the 
bounding box is treated as a hyperparameter, allowing flexibility based on the specific characteristics of 
the dataset. If there are overlapping bounding boxes, another hyperparameter is used to determine the 
threshold for removing high-overlap boxes, thus ensuring that redundant bounding boxes are filtered out. 

This approach follows the structure of the CULane dataset, which categorizes lane lines into four 
distinct classes: far-right, close-right, close-left, and far-left lanes. By assigning these classes to the 
corresponding points, the object detection model can be trained to predict not just the presence of a lane, 
but also its specific class. The use of classes allows the system to better differentiate between the lanes and 
improve the accuracy of the model.After the model is trained, the YOLO architecture is used to predict the 
bounding boxes for lane points. Once these predictions are made, the lane lines can be reconstructed by 
connecting the centers of the predicted bounding boxes. This method allows for real-time lane detection 
with minimal sequential steps and little to no preprocessing. 

 
Fig. 4. Labeled Train image with Augmentation 
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One of the key advantages of this approach is its efficiency, especially on resource-constrained 
machines. The YOLO model is known for its performance on low-power devices, such as embedded 
systems and single-board computers, making it an excellent choice for in-vehicle ADAS systems. 
Furthermore, YOLO’s ability to detect objects without requiring a perfectly defined object in the image 
allows the model to predict lane boundaries even when they are not explicitly painted on the road. This is a 
significant improvement over conventional and segmentation-based approaches, which often fail in 
situations where lanes are not clearly visible. As human drivers, we can infer lane boundaries based on 
contextual clues, and this approach mimics that behavior. By labeling such situations in the dataset (as in 
the CULane dataset), the model is able to predict lanes even in challenging environments, providing a 
major advantage over traditional methods. 

 
1.1.1.9. CULane Dataset Overview 

CULane is a large-scale, challenging dataset designed for academic research in traffic lane detection. 
The dataset was collected using cameras mounted on six different vehicles driven by various drivers in 
Beijing, resulting in over 55 hours of video footage and a total of 133,235 frames. The dataset is divided 
into 88,880 frames for the training set, 9,675 frames for validation, and 34,680 frames for testing. The test 
set is further categorized into a "normal" group and eight challenging conditions, such as shadowed lanes, 
no lane markings, or heavy traffic [16]. 

 

Fig. 5. CULane Dataset Overview [16] 
 
Each frame in CULane is manually annotated with cubic splines to accurately represent the lane 

markings. In cases where lane markings are occluded by vehicles or are not visible, lanes are still annotated 
based on contextual information. This feature allows the dataset to train models to infer lane boundaries 
even in difficult conditions, where conventional detection methods may fail. Importantly, only the four 
main lane markings relevant to practical applications (far-left, close-left, close-right, far-right) are 
annotated, while other markings, such as those beyond barriers, are excluded. This dataset provides a 
rigorous and comprehensive benchmark for lane detection algorithms and is widely used in academic 
research to develop and evaluate advanced lane detection models. 

 
1.1.11. Preliminary Training Results 

In order to evaluate the feasibility and performance of using the YOLOv8n model for lane detection, 
preliminary training was conducted on the lane detection dataset. The model was trained using the 
Ultralytics YOLOv8.2.79 framework, with Python 3.11.8 and PyTorch 2.2.1 on an NVIDIA GeForce RTX 
3080 Ti GPU. The YOLOv8n model, consisting of 168 layers and 3,006,428 parameters, achieved a 
processing capacity of 8.1 GFLOPs.  

The training was done with these settings: an SGD optimizer was used with a learning rate of 0.01 
and a momentum of 0.9. Both training and validation images were sized at 640 x 640 pixels. The training 
lasted for 75 epochs, finishing in 7.708 hours. 
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The evaluation metrics for the model included Precision (P), Recall (R), mean Average Precision at 
IoU threshold 0.50 (mAP50), and mean Average Precision across IoU thresholds from 0.50 to 0.95 
(mAP50-95). A summary of the results is provided in Table 2. 

Table 2 

Preliminary training results of YOLOv8n on lane detection task 

Class Precision (P) Recall (R) mAP50 mAP50-95 
Far Left Lane (LL) 0.562 0.843 0.786 0.568 
Close Left Lane (LC) 0.763 0.831 0.872 0.664 
Close Right Lane (RC) 0.659 0.818 0.823 0.588 
Far Right Lane (RR) 0.485 0.487 0.511 0.295 
All Lanes (Overall) 0.617 0.745 0.748 0.529 

 
The results indicate that the YOLOv8n model performed well in detecting close-left (LC) and close-right 
(RC) lanes, with high precision, recall, and mAP values. However, far-right (RR) lane detection proved 
more challenging, with lower scores across all metrics, particularly for mAP50-95. These results validate 
the potential of using object detection models for lane detection tasks in real-time systems, but also suggest 
areas for improvement, especially in handling far-right lanes. 

 
Fig. 6. Training metrics for Lane Detection 

 

 

Fig. 7. Predicted Images from Validation Set 
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Traffic Sign Detection Systems 
Traffic sign detection is a critical component in Advanced Driver Assistance Systems (ADAS) and 

autonomous driving, aimed at providing the driver with essential information about road regulations and 
hazards. However, traffic sign detection is often not utilized in real-time applications. Instead, many 
navigation systems rely on preloaded databases, which contain information about the traffic signs in 
specific geographic regions. These databases are baked into navigation maps, providing drivers with basic 
sign-related information. While convenient, this method has several limitations: the number of signs is 
limited, the data may be outdated, and it does not reflect real-time road conditions, such as newly placed or 
temporarily altered traffic signs. 

 
1.1.1.10. Real-Time Traffic Sign Detection 

Real-time traffic sign detection aims to address the shortcomings of relying on static databases by 
using an object detection model to locate and classify traffic signs as they appear in the driving 
environment. The process is relatively straightforward: the model detects the traffic signs in the camera 
feed and classifies them based on predefined categories. Object detection models such as YOLOv8 are 
commonly used for this purpose due to their high accuracy and fast processing capabilities. 

The detection process works in two main steps. First, sign extraction happens, where the object 
detection model finds traffic signs in the image and separates them from the rest of the scene. This makes it 
easier to focus on just the sign itself without distractions from the background. After that comes sign 
classification, where the model identifies what type of sign it is – like whether it's a speed limit, a warning 
sign, or a prohibition sign. 

Real-time traffic sign detection faces challenges due to the large variety of signs, with over 200 
distinct types and many variants per country. As more classes are added, even optimized models like 
YOLOv8n become larger and more complex, increasing the computational load and slowing down 
inference times. This makes such models less suitable for minicomputers or embedded systems with 
limited resources, highlighting the trade-off between model size and real-time performance in low-resource 
environments. 

 
1.1.1.11. Optimizing Traffic Sign Detection 

To mitigate the performance issues, an alternative approach can be adopted by separating the 
processes of sign extraction and classification. Instead of detecting and classifying signs simultaneously, 
the system can first focus on extracting the potential traffic signs from the camera feed without classifying 
them. This reduces the number of categories the object detection model needs to handle at once, thus 
simplifying the model and improving inference speed. 

Once the signs are extracted, the classification step can be deferred or handled by a lighter model 
that runs in parallel or asynchronously. Alternatively, a practical solution for low-resource systems may be 
to simply present the driver with the extracted image of the sign. In most cases, human drivers are able to 
recognize the meaning of the sign from its visual appearance, even without formal classification. By 
bypassing the classification step altogether, the system can still provide valuable information to the driver 
in real-time while maintaining high performance on minicomputers. 

This separation of sign extraction and classification offers a balanced trade-off between accuracy 
and real-time performance, making it more feasible to deploy traffic sign detection systems on embedded 
platforms without sacrificing the timeliness of the information presented to the driver. 

 
1.1.12. Dataset: DFG Traffic Sign Dataset 

The dataset used for training the traffic sign detection system is the DFG Traffic Sign Dataset, 
which contains a wide variety of traffic signs captured on Slovenian roads. This dataset is well-suited for 
the task because the traffic signs in most European countries are very similar, being largely icon-based. 
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The dataset contains 200 traffic sign categories across around 7,000 high-resolution images. The RGB 
images were captured using a vehicle-mounted camera, covering both urban and rural areas across six 
Slovenian municipalities. Importantly, only images that contain at least one traffic sign were selected, and 
the dataset was curated to ensure a significant scene change between consecutive images. 

The dataset is divided into 5,254 training images and 1,703 testing images, with a total of 13,239 
tightly annotated traffic sign instances larger than 30 pixels. Signs with bounding boxes smaller than 30 
pixels are flagged as difficult and are ignored during training. The images are anonymized by blurring 
faces and vehicle license plates to comply with EU GDPR regulations. The high-resolution images 
(1920x1080) make the dataset suitable for detecting small traffic signs in real-world driving conditions. 

In addition to the base dataset, an augmentation dataset is provided, which introduces additional 
variability by distorting existing traffic signs and placing them into new scenes. This dataset includes over 
30,000 augmented traffic sign instances across 8,775 additional images. The augmentation techniques 
include perspective changes, scaling, and variations in brightness and contrast. By incorporating these 
augmented images, the training process benefits from increased diversity and robustness. 

This dataset allows the model to generalize to various conditions and ensures that the system can 
detect traffic signs even under challenging situations, such as poor lighting or occlusions. 

 
1.1.13. Training of YOLOv8n for Traffic Sign Detection 

To implement the proposed traffic sign detection system, the YOLOv8n model was trained using 
the DFG Traffic Sign Dataset. Instead of classifying individual signs, the focus was on detecting one 
class: traffic sign, simplifying the task. This approach allows for handling classification separately or 
simply presenting the extracted sign image to the driver. 

The training spanned 50 epochs and was completed in 5.5 hours. The model, consisting of 168 
layers and 3 million parameters, was trained using the AdamW optimizer with an automatically 
determined learning rate (lr=0.002) and momentum (0.9). The input image size was set to 640x640 pixels, 
ensuring high-resolution inputs to capture smaller traffic signs. 

The model achieved excellent performance: Precision (P): 0.977, Recall (R): 0.956, mAP50: 
0.983, and mAP50-95: 0.854. Inference speed was 1.8 ms per image, making it highly suitable for real-
time applications, as it can quickly detect signs in dynamic driving environments. The slight delay in 
delivering sign information to the driver is not critical, as long as signs are captured reliably. 

 

 

Fig. 8. Training metrics for Traffic Sign Detection 
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Fig. 9. Predicted Images from Validation Set 
 

This approach offers a balance between performance and efficiency, making it suitable for 
deployment on embedded systems with limited computational resources. By simplifying the task to sign 
detection and deferring classification, the system ensures that it does not miss critical information on the 
road due to low frame rates, while still providing timely warnings to the driver. 

 
Pothole Detection System 

Pothole detection is not commonly found in existing ADAS solutions, especially in the context of 
real-time visual systems. While there are examples of pothole detection used for road monitoring or 
maintenance purposes, real-time pothole detection aimed at driver assistance remains an open field for 
innovation. Our proposition is to use an object detection model, specifically YOLOv8n, trained to detect 
potholes in real-time based on dashcam footage. Given YOLOv8n’s ability to handle object detection 
efficiently on low-resource devices, it is well-suited for this task, where both detection speed and timely 
delivery of the information to the driver are crucial. 

The task is straightforward: detect potholes in dashcam footage in real time to warn drivers about 
potential road hazards. However, the challenge lies in finding suitable datasets, as there are no large public 
datasets that specifically focus on potholes in the context of dashcam footage. To address this, we 
combined an existing pothole dataset with our own labeled dashcam images to create a more robust 
dataset. The following sections describe the dataset, training process, and results. 

 
1.1.14. Dataset: Pothole Detection Data 

For this task, we started with a small public dataset from Kaggle, known as the Potholes Dataset, 
which contains 665 images with pothole annotations in PASCAL VOC format. The dataset was originally 
created for road maintenance purposes and includes images from a variety of sources, though they are not 
specifically dashcam footage. Given that these images do not fully represent real-time driving conditions, 
we anticipated that the results from using this dataset alone would not be satisfactory for our real-time 
detection needs. 
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Fig. 10. Labelled Frame with Potholes in Bruhovychi 

 
To improve the dataset and make it more applicable to real-time ADAS, we expanded it by adding 

over 300 images sourced from public YouTube videos and footage captured in the cities of Bruhovychi 
and Lviv using dashcams. The newly collected images were labeled using the Roboflow framework, where 
all visible potholes were annotated. The final dataset contains over 900 images with labeled potholes, 
providing a diverse and representative set of training data for the detection task. 

 
1.1.15. Training of YOLOv8n for Pothole Detection 

The YOLOv8n model was trained on the enhanced pothole dataset to detect potholes as a single 
class. The training process utilized extensive data augmentation techniques to increase the variety of 
training samples and improve the model’s robustness. Augmentations included geometric transformations, 
brightness and contrast adjustments, and random cropping, ensuring that the model would generalize well 
to various road and lighting conditions. 

It was trained on a YOLOv8n-based training setup, with 168 layers and a total of 3,005,843 
parameters. The selected optimizer was AdamW, with a learning rate of 0.002 and momentum of 0.9. 
Image sizes for both training and validation were set to 640x640 pixels. Training was conducted for a total 
of 100 epochs. 

The augmented dataset allowed for better generalization, and the YOLOv8n model was able to learn 
the characteristics of potholes under various conditions, from urban to rural environments. The goal was to 
create a model capable of detecting potholes in real-time and delivering this information to the driver in a 
timely manner. 

 
1.1.16. Results and Performance 

The YOLOv8n model was evaluated on a validation set of 181 images containing 538 pothole 
instances. The results were: Precision (P): 0.782, Recall (R): 0.641, mAP50: 0.719, and mAP50-95: 
0.385. While the model performed well with a precision of 0.782 and mAP50 of 0.719, the lower mAP50-
95 score (0.385) indicates challenges with higher IoU thresholds, likely due to the variability in dashcam 
footage where potholes are less distinct. 

However, the model's inference speed of 1.2 ms per image makes it highly suitable for real-time 
applications, providing a solid foundation for pothole detection in ADAS. The combination of public and 
custom-labeled dashcam data improved the model's generalization to real-world driving conditions, though 
further improvements in dataset size and variety, as well as advanced post-processing techniques, could 
enhance performance, particularly at higher IoU thresholds. 
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Fig. 11. Training metrics for Pothole Detection 
 

 

Fig. 12. Predicted Images from Validation Set 
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1.1.1.12. Delivering the Information to the Driver 
One of the main challenges in deploying pothole detection systems on minicomputers is processing 

speed. While the YOLOv8n model is optimized for real-time detection, it still takes some time to process 
each image, particularly on resource-constrained hardware. The delivery of pothole information to the 
driver must be quick and effective to ensure safety. Displaying warnings on a screen, such as a dashboard 
or heads-up display (HUD), is not the ideal solution. Such visual warnings may distract the driver, drawing 
their attention away from the road during a critical moment when full concentration is required. 

Our proposed solution is to replace screen-based warnings with a more intuitive and non-distracting 
system: an LED strip mounted under the windshield, paired with auditory warnings. This system works by 
lighting up the LED strip in the direction of the detected pothole, without requiring the driver to look at a 
screen. 

The concept is as follows: if the system detects a pothole on the left side of the road, the 
corresponding left section of the LED strip will light up in a red color, accompanied by a beeping sound. 
The driver will instinctively understand that the danger is located on the left side, allowing them to focus 
on the road in that direction. The LED strip will highlight the approximate location of the pothole relative 
to the center of the ego vehicle, helping the driver react quickly without unnecessary distractions. 

This approach ensures that the driver’s attention remains on the road while still receiving crucial 
information about potential hazards. By directing the driver’s attention to the correct area of the road, this 
solution provides a more seamless and effective warning system, enhancing both safety and reaction times. 

 
Next Steps – Combined System 

In this section, we propose a combined system that integrates each individual component (collision 
warning, traffic sign detection, lane detection, and pothole detection) into a unified driver assistance 
system. The objective of this system is to perform real-time image analysis and deliver actionable 
information to the driver using a resource-constrained device, ideally a minicomputer such as the NVIDIA 
Jetson Nano or Xavier. If optimized sufficiently, the system could also be implemented on a Raspberry Pi, 
which would be a significant breakthrough in terms of performance on limited hardware. 

 

1.1.17. System Components and Workflow 
The system comprises several key components working together. Image Capturing utilizes a front-

facing camera mounted on the dashboard to continuously capture video footage. This footage undergoes 
Image Preprocessing, where steps like undistortion, cropping, and filtering ensure data quality. The 
central element is the Universal YOLO Model, a deep learning model trained to detect vehicles, 
pedestrians, traffic signs, potholes, and lanes, optimized for real-time inference on limited hardware. To 
enhance FPS performance, Parallel YOLO Model Instances can run simultaneously, processing multiple 
frames and minimizing delays. 

An Object Tracker, such as SORT or Kalman filter, maintains awareness of dynamic objects 
between frames, while the Kalman Filter predicts object speed and position, crucial for accurate collision 
warnings. The Perspective Transformer converts object data into a bird’s-eye view for better spatial 
understanding. Other tasks like distance estimation and lane curvature detection are handled by Additional 
Processing Modules operating in parallel. The Final Frame Composer integrates all outputs into a 
coherent frame, while the Warning Processor evaluates the situation and generates alerts when necessary. 
Finally, the Output Display delivers information to the driver via LED indicators, dashboard displays, or 
audio warnings, designed to minimize distraction. 
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1.1.18. Module-Based Parallel Processing Approach 
To achieve real-time performance, the system will adopt a modular architecture, where each 

component or processing step is wrapped in an independent module that operates in parallel. This 
architecture will reduce latency by eliminating the need for sequential processing wherever possible. Each 
module will store its last processed result and provide the information to other modules when required, 
allowing the system to remain responsive even under high loads. 

Multithreading will be employed extensively to ensure that the system’s performance scales with the 
available hardware resources. For example, the image preprocessing module can run concurrently with the 
object detection model, while the warning processor can operate in parallel to the object tracker and 
perspective transformer. If the system detects that it has enough available resources, multiple instances of 
the same YOLO model can be deployed, each working on different frames to further increase the FPS rate. 

The result is a highly modular and scalable system that is capable of adapting to the hardware it is 
deployed on, ensuring maximum efficiency and real-time performance. 

 
1.1.19. Challenges and Optimizations 

While this approach offers a promising solution, it also comes with significant challenges, especially 
in terms of optimization for resource-constrained hardware. For example, running multiple instances of a 
YOLOv8n model on a Raspberry Pi would require aggressive optimization techniques, such as model 
pruning, quantization, and multithreading optimization. Further optimizations will need to focus on 
reducing the latency of each module, particularly the object detection and tracking modules, which are the 
most computationally demanding. Nonetheless, if successfully implemented, this approach will enable 
real-time driver assistance systems to run on inexpensive hardware platforms, offering a massive potential 
impact on the accessibility and availability of such systems in consumer vehicles. 

 
1.1.20. System Architecture Representation 

The following diagram (Figure 13) represents the preliminary structure of the combined system, 
illustrating how each module interacts and processes data in parallel. 

 
Fig. 13. Preliminary structure of the combined system 

 
Conclusions 

In this research, we have proposed an advanced ADAS system integrating multiple real-time 
components, including collision warning, lane detection, traffic sign recognition, and pothole detection, 
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using cutting-edge machine learning and computer vision technologies. The system architecture is 
designed to be modular, leveraging parallel processing to ensure real-time performance even on resource-
constrained devices such as Raspberry Pi or NVIDIA Jetson Nano. 

We presented comprehensive approaches for each system, detailing the benefits and challenges of 
both conventional and deep learning methodologies. The lane detection system showed significant 
improvements with the application of object detection models like YOLO, allowing for real-time lane 
boundary detection with minimal preprocessing. Similarly, the proposed traffic sign detection method 
provides a flexible solution, balancing detection accuracy and speed by separating the sign detection and 
classification processes. 

A novel approach to pothole detection using YOLOv8 was also explored, demonstrating the 
potential of real-time road surface monitoring as part of an integrated driver assistance system. The 
implementation of an innovative warning delivery system, utilizing LED strips to provide non-distracting 
alerts to drivers, showcases the importance of designing user-friendly interfaces in ADAS solutions. 
While the results of our preliminary experiments are promising, particularly in terms of detection speed 
and accuracy, challenges remain in optimizing the models for embedded systems. Extensive model 
pruning, quantization, and multithreading will be required to fully realize the system’s potential on low-
resource platforms. 

Future work will focus on further optimizing the system architecture, enhancing detection accuracy 
in adverse conditions, and expanding the dataset for pothole detection to ensure broader generalization. 
Successful implementation of this integrated ADAS solution could significantly improve road safety, 
making advanced driver assistance technology more accessible to a wide range of vehicle owners. 
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У статті представлено інтегровану інтелектуальну систему допомоги водію (ADAS), яка 
об’єднує кілька ключових функціональних модулів, як-от: система попередження про зіткнення, 
виявлення смуг руху, розпізнавання дорожніх знаків та виявлення ям на дорогах, що реалізовані 
за допомогою сучасних моделей глибинного навчання, зокрема YOLOv8n. Система оптимізована 
для роботи на пристроях Raspberry Pi або NVIDIA Jetson Nano із обмеженими обчислювальними 
ресурсами із застосуванням модульної архітектури та паралельного опрацювання даних для 
забезпечення швидкодії в режимі реального часу. В межах цього дослідження проведено огляд 
наявних рішень в ADAS та запропоновано нові підходи, що значно підвищують ефективність 
таких систем. Ключовими інноваціями є ефективний підхід до виявлення смуг руху на основі мо-
делей виявлення об'єктів, виявлення дорожніх знаків у реальному часі з гнучким процесом екст-
ракції та класифікації, а також нова система виявлення ям, оптимізована для відеозаписів із 
відеореєстратора. Крім того, запропонована система оповіщення водія за допомогою світло-
діодної смуги дає змогу інтуїтивно привертати увагу до потенційних небезпек. Попередні резуль-
тати підтверджують задовільну точність виявлення у всіх компонентах, проте для успішного 
впровадження на пристроях із низькими ресурсами потрібна додаткова оптимізація. 

Ключові слова: інтелектуальна система допомоги водію, виявлення об’єктів, глибинне 
навчання, реальний час, YOLOv8n, виявлення смуг руху, дорожні знаки, ями на дорогах.  

 

 
 


