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A methodology to construct solutions for two-dimensional quasi-static thermomechanical
problems for bodies with plane-parallel boundaries (2D-QS thermomechanical problems)
is proposed. This approach begins with selecting equations for the plane quasi-static
thermoelasticity problem in terms of stresses. The methodology approximates the dis-
tribution of non-zero stress tensor components through the body’s thickness using cubic
polynomials, with coefficients expressed in terms of integral characteristics of the stress
tensor components over the thickness variable and their specified boundary values on the
body’s lower and upper surfaces. Consequently, the original two-dimensional boundary
problem is simplified to a one-dimensional boundary problem for the integral character-
istics. For an infinite layer, solutions are found using the Fourier transform along the
longitudinal coordinate, while for a strip plate, a finite integral transformation is applied
along the transverse coordinate. General solutions for 2D-QS thermomechanical problems
are formulated for the selected bodies under non-stationary volume forces and temperature
fields. The resulting expressions for the stress tensor components are presented as convo-
lutions of functions representing the boundary values on the bases (and end cross-sections
for strip-plates) and functions describing homogeneous solutions to the one-dimensional
boundary problems for the integral characteristics of the stress tensor components.

Keywords: bodies with plane-parallel boundaries; layer; strip-plate; stress tensor com-
ponents; cubic approximation; integral characteristics; Fourier transform; finite integral
transform.
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1. Introduction

Bodies with plane-parallel boundaries are commonly used as structural elements in various devices
and modern engineering applications. Such bodies, exemplified by infinite layers (plates) and strip-
plates, are subjected to the influence of volumetrically distributed non-stationary temperature fields
and forces during the operation of respective devices. These two factors of thermal and force impact
induce a corresponding thermoelastic state in the considered bodies. In the literature, particularly
in [1-5], well-described methods for calculating the thermoelastic state in bodies of canonical shapes
under the influence of temperature and force factors are based on one-dimensional models primarily
utilizing displacement equations.

In the work [6], the original systems of equations for three- and two-dimensional dynamic ther-
moelasticity problems under stresses are formulated in Cartesian and cylindrical coordinate systems.
The interrelated equations for the components of the dynamic stress tensor system are reduced to
sequentially coupled wave equations for the corresponding combinations of these components. The
key equations in these systems pertain to the first invariant of the stress tensor. In the case of quasi-
static problems, such stress equations are significantly simplified. In the monograph [7], for instance,
a two-dimensional coupled dynamic thermoelastic problem for an infinite layer is examined, and based
on it, the thermo-mechanical behavior of such a layer under non-uniform electromagnetic action is
investigated.
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Considering the need to account for the influence of the nature of temperature and force factors on
the operational modes, reliability, and longevity of plate-like structures, the development of effective
methods for calculating 2D-QS stresses becomes a relevant applied and engineering task.

However, the calculation of quasi-static stresses in plate-like elements under the action of non-
stationary temperature and force factors based on two-dimensional models is insufficiently explored
and documented in the literature.

This article proposes an effective methodology for solving 2D-QS thermomechanical problems under
stresses for bodies with plane-parallel boundaries in the presence of prescribed temperature fields and
volume forces.

2. The system of original relationships for the 2D-QS thermoelasticity problem in
stresses for bodies with plane-parallel boundaries

Consider a body with plane-parallel boundaries, referred to a Cartesian coordinate system Oxjxoxs,
where the plane 10z coincides with the mid-plane of the body. The body extends infinitely along
the Oxz; and Oxy axes, while along the Oz axis, it has a constant thickness of 2h. Here, h is half
the thickness of the body. In the two-dimensional case, the body is subjected to the influence of a
temperature field T'(z1,3,¢) and a volume force F(z1,x3,t) = {F1;0; F3}. These two thermal and
force factors induce a thermoelastic state in the body. In the case of plane deformation, this state is
described by the components O'ﬁ), Jg‘;), Jég), O'%) of the quasi-static stress tensor.

For the 2D-QS thermoelasticity problem under stresses, the original system of equations for a body

with plane-parallel boundaries takes the form
E 1 OF3; OF;
Agp® = - 22 AT 3 L
11/} 1 ! 8%3 + axl ’

—v C1-v
(s) _ 321/1(3) oF, 0F;

A =— — — 2
1913 axlawg 8%3 (99517 ( )
aaﬁ) 80%)
= - F 3
83:1 8ZE3 b ( )
O.(S) w(s) _ O'( _)’ (4)
o) = vps) — oET. (5)
The boundary conditions on the surfaces 3 = +h of the body are
QW)+ 90" )+ 5)& s
e T T =0 ot =0 o) = ul, (6)
and on the end surfaces 1 = £d of the body the boundary conditions are as follows:
QU e O0NE g 0F _ g
0z +tFs+ 0x =0, o043 =0 o5 =W (7)

Let us construct solutions to the quasi-static thermoelasticity problems for an infinite layer with
plane-parallel boundaries and a strip-plate. We will consider the system of equations (1)—(5) as the
initial system, which, in the case of the layer, we will solve with the boundary conditions (6) on its
bases x3 = +h. Correspondingly, in the case of the strip-plate, additional conditions (7) need to be
added to the boundary conditions (6) on its end intersections.

3. Definition of the thermoelastic state of an infinite layer

To solve the 2D-QS thermomechanical problem described by the system of equations (1)—(5) for an
infinite layer along the x; coordinate, we approximate the distribution of functions (*) (z1,23) and

ag’) (1, x3) over the thickness coordinate x3 with cubic polynomials

4
P =3"ul ()2 (8)
j=1
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j—1
013 = Zalg . (9)

Then the coefficients wj 1 g‘;)(] 3 of the approximation polynomials (8), (9) are expressed in

terms of integral characteristics

1 h
= o [ v, w0 = 3 [ 0z,

S 1 h S S 3
N1(3) = ﬁ/_h0§3)d:n3, M1(3) =252 /_hags):ng dxs (10)

(s)

of functions 1/1(3) (1, x3) and alg (z1,x3) along the thickness coordinate x3, and the boundary values
of these functions are given as follows

() _ 3 1 (s (s) _ 9 (s)_i (s)
1/}(0) - 2N 4 * w(l) - QhM w**y
() _ 3 () _ 3 ni(s) whiw_i<@
Yo = 12 v a2 Ve = gt T g
() _3ale) () _ D (s)
Y3000 = §N13 v M3y T ﬂMls ’
() _ 3 (s (s) _ D 1.9
132) = “gpzViss Qe = ~gs s (11)

Here
¢£5) = )T (8~ wfj) = Bt — s)—

The system of equations for determining the integral characteristics N () M), Nl(g), Ml(g) (ana-
logues of forces and moments) is obtained by averaging the first two equations (1), (2) of the sys-
tem (1)—(5) over the thickness coordinate z3 and these equations multiplied by x3, according to the
formulas (10). In the case of a body with plane-parallel boundaries, the integral characteristics N (s)

M), Nl(g), Ml(g) are determined from a system of one-dimensional equations,

9 3\ n) gl 3 )
<8_x%_ﬁ>N():q’1 BT (12)
H? 15
z . © (s) (s)
93y o L[ 2w (Ff — Fy) +8F?El) (14)
ax% h2 13 2h 8 1 1 1 8331
8> 15\ o 3 [owt . ] 3foN® 4\ oF®
(a_x% h2>M13 %[axl FEEO = T T (15)
Here
ol — _ aE | 0°T 1 O_T +_ 8_T R i(F —F)+ aFl(l)
1 1—v | 022  2h 3 Ox3 1—v|2n 3 3 ox1 |’
() __oB [0Ty 3 |(0T\" (OT\"| 3 . ..
®: {83:% * 2h T3 * Oxs 2h?2 (T )
(2)
1 3 1 , OF;
1_ 2h(F3 +F3) F3 + 61131 )
where

2n—1 h 1 (n) m—1 h . .
Tn:' 2B /;hT:EgL d$3, F’zn — opn /;hFZZEgL dLUg’ (7’1,:1,27 Z:1,3)
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are integral characteristics of temperature and components of the volumetric force vector

OT\* 9T (21, %h,t
F = {F;0; I3}, <8—x3> :—(xalx?) )7

The boundary values of 1(*) of the function ¥(®) on the surfaces x5 = +h, which are included in
the system of equations (12)—(15), are found from the system of equations

') 10

FE = Fy(x1,+h,t).

S T+ ) = Mg =0, (16)
8¢ v 6 (s
P T - ) = N =0, (a7

obtained by averaging the boundary conditions (6) in accordance with the relations (10).
To solve the system of equations (12)—(15) for the integral characteristics of the functions

) (21, x3) and a%)(azl,a;g), we apply the direct Fourier transform f(¢) = = [20 fx1) €57 day.
Here, £ is the Fourier transform parameter. Then the Fourier transforms of the functions () (z1,x3)

and ag’) (1, x3) are determined by the expressions:

4
CEOEDIAOL I (18)
=1
4
5—%) (€, 23) = Z dg)(j—n(f) xé_l. 19)

The Fourier transforms of the coefficients 1/1 ) )(f ) and al®) j_l)(g) of the approximation polyno-
mials (18)—(19) are determined by the relatlonshlps

S s 1~S 7(s 5 “r(s 3~S

4 h
’i;és) = ﬁlb* - WN( )7 Qﬁés) = 45?1/;»(:) - WM(S)
~Ss)(o) 3N1(§)7 dg(l) = %Ml(g)7 54%)(2) = —Q%Nl(g)y
5‘%)(3) = 2;513 M1(3)7 T/NJ*S) = PO 4= &(jﬁ) = 1/;(5)+ — ), (20)

The Fourier transforms of the coefficients ¢>(ks), T,Zk(ki), NG MG, Nl(g), M 1(§) are given by the following
formulas, accordingly

OIS ek 250 N S ErmeETmy o
i) = —(ﬁii—gi( - ) - s B, (22)
Fog - HEGA_Z R (53 ‘if;l* g))h; e 23)
N = Mn:;il G )ﬁ;giﬂ : (25)
0 = g {67 £ [ M0 - 8
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3 -1 . ~(2)> 15 45 1
+ (2R —icF l— e+ —
(h 1 i€k 2h2+30 At (£2+%)(£2+2_(2))
3 €45+ 2R ()
2 I 26
h(€2+45)(€2 +30) .
Here _ -
ey = _F | o LN\ (AT\NT_(dTN\T| 1 1
¢ = 1—7{ ST+2h <dx3 dxs +’y—1 2h(F3 )+Z§F1 ’
E -3 | [/dT\T  [dT\~ 3 sy
@(5) __a_ _g2 — —_— T — (Tt =T~
2 (¢) 1—7{ Y <dx3> +<dx3> STE )}
1 [3 -, = - =
1.5 [—(Fgf + Fy) - ByY +i€Ff2)} ;

e =(n)  2n—1
2 /—h (573:3)3:3 1d$37 z’ - opn / F 573:3 1d$3-

With the found transforms 1/;,(‘5), ~,(Fi), NG pr(s) Nl(g , M1(3)7 according to the expressions (21)—
~(s)

(26), the transforms of the stress tensor components 1/1(3 = agl) + aég) and 0,5 are determined using
the relationships (18)—(19). With the known transform &g?, the transforms of &ﬁ) components of the

stress tensor are determined by the formula:

(€ ws.t) = —— <d013 Fl) (27)

i§ \ dxs
After that, we find the transformants &ég) and &ég) of the components aég) and aé‘;) of the stress tensor

¢ from the expressions

557 =79 (28)
o = - 4. (29)
Applying the inverse Fourier transform f(x1) = 5= f f e~ %P1d¢ we express the solution to the

quasistatic problem of thermomechanics in stresses for an 1nﬁn1te layer with plane-parallel boundaries
using the expressions (28)—(29).

4. Determining the thermo-stressed state of a strip-plate

Let us construct an approximate solution to the quasi-static problem of thermomechanics to determine
the thermo-stressed state of a strip-plate. We will start with the system of equations (1)—(5), repre-
senting the 2D-QS problem of thermoplasticity for bodies with flat parallel boundaries. In the absence
of external force loads on the end sections x1 = +d, by averaging the boundary conditions (7) on these
sections and taking into account the conjugation conditions of functions
U(d,7)=%(1,7), ¥(d,T1)=%¥(-1,71),
U(—d,7)=¥(1,7), Y(-d,7)=T(-1,71).
0’13(d 7’) =o13(1,7), o13(d,7) = o13(-1,7),
(30)
o13(—d,7) = o13(1,7), o13(—d,T) = 013(—1,7)
and values of functions ¥(x1,7) and o13(x1,T) (stress tensor components) at the corners of the cross-
sectional rectangle of the strip, we obtain the following boundary conditions with respect to the coor-
dinate x; on the functions ¥+, N, M, Ni3, Mis:
E(d,t) =0, Nig(£d,t) =0, Miz(+d,t) =0,
N(£d,t) = Fy (£d,t) — F5 (£d, 1),

2
M(d,t) = h5 { [Fyf (d,t) — Fy (+d,1)] + Fg(l)(id,t)} + 1—}8 <d£113> % (31)
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In accordance with the inhomogeneous boundary conditions (31) on the functions N and M, we
represent the solutions of the first two equations of the system (12)—(13) in the form:

N(z1,t) = % {[N*(d, £) + Nuw(—d, 8)] + % [N.(d,t) — Niu(—d, t)]} + No(z1,1), (32)

M(z1,t) = % {[M*(d, £) + My (—d, t)] + % (M. (d,t) — My.(—d, t)]} + Mo(z1,1). (33)

Then the functions Ny(x1,t) and My(z1,t) can be defined from equations

d? 3 3 _ 3 1
? 15 15 15 T
— = — | My = ®y — —S (T — 7))+ —= (M, + M) + = (M, + M,, 35
(2 7 ) Mo = 2= g =07 + g [ M)+ ZOL 0] (39)
under homogeneous boundary conditions on the surfaces x1 = +d.

Here
N, = N(d,t), N = N(—d,t), M,=M(d,t), M. =M(—d,1).
To solve the system of interrelated equations (31), (34)—(35), we will apply a finite integral transfor-
mation along the coordinate x7.

In this process, when constructing the kernels of the finite integral transformation and their eigen-
values, we will take into account that the differential operators with respect to the coordinate x1 in the
original equations (31), (34)-(35) for the functions Ny, My, Mi3, 9T are the same, and the boundary
conditions are of the same type. Therefore, considering the mutual orthogonality of eigenfunctions,
from the equations (34)—(35), taking into account the boundary conditions (31), we will find the kernel
of the finite integral transformation along the coordinate x
sin ag (1 + d) b 7k
— i where o = 2.

Based on the found expressions for N, M, Ni3, M3, and ¢* functions, ¥ and 013 can be expressed
as follows:

K(ag,z1) = (36)

3 x2 5 («x xs
1/1(961,9637'5)25 <1—h—§’> N(ﬂflat)+§<ﬁ3—h—§> M(z1,t) (37)
1 x2 1 x xs
- Z <1 - 3h—§> ¢*($1,t) Z <3§ - 5h—§> ¢**($1,t),
3 x2 5 (x3 a3
Ulg(xl,xg,t) = 5 <1 — h—g) ng(xl,t) + 5 <f — h_§> Mlg(xl,t). (38)

Here U, (z1,t) = 0T + U™, U (z1,t) =0T — U™,

To determine the component 017 of the stress tensor, it is necessary to solve the equation (3) with
known expressions (37) and (38) for ¢ and o13. Applying a finite integral transform along the x;
coordinate, taking into account zero boundary conditions, and considering the mutual orthogonality
of eigenfunctions, we find the expression for the component oy

[e'e] P ~ -

N c v(l+v = =

G11(z1,p) = ) p2+i§a§ [p (E )p% (e, p) — pa(l +v)p*T(a, p)
k=1

PR
dFy(zq,
+ / MK(@k,iﬂl)d!El K(ag,x1). (39)
—d dl‘l
The functions N1(§)> Ml(g), found using the finite integral transform along the x1 coordinate, will be
equal to
o d dF{Y (@)

K(Oék a;l) dxl
s —d dx ’
N (@) ==Y e

k=1 Ak T 32

K(ak,xl), (40)
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o d (2) k
(s) 3 (1) dFy™ (x1) 3 1-(-1) Koy, 21)
M — —F — —2 ~ K N* - N** 5 130
13 (1) ; ! () /_d diy (Oék7$1)d$1+2h%d o ( ) ai—l—%
(41)
and functions N©®) and M) can be written as
N — % (V) 4 N2y + 2N - N2
> 3 ~_ s 3 S S K(ak 1’1)
n IO B O (OB S § N OB AU IO } Aty 42
> g ) ) - e [N ] R
M) = % [(Mis) + M)+ %(M ) - Mfi))]
> (15 - < (s 15 s 91 Klag, 1)
N 15 74 (5)) _ M~ (—1ykpu® } ’ 43
kZ:l{th(w ) 2 hz\/aak { (=1) ] (a%—l—% (43)
Here
sy h _ sy h _
s kA1, L W] , h [(dNi
M* = — [=(F; — F. F A\ T )
5 |:2( 3% 3*) + 3% :| + 10 d.Z'l e1—d
2
O g oy g0 (4N
M** - 5 |:2(F3** F3>k*) +F3**:| + 10 ( dﬂ?l . :—d.

With known functions N1(§) and M1(§)v the functions ¥(®)* are found from expressions (6) and (7)
through direct integration with respect to x1, taking into account the zero boundary values of the

function ¥ at the end faces #; = +d. The functions 1(*) and Jﬁ,) are determined by the relations (37)
and (38), and the stress components O'ﬁ), Jg‘;), J:(,)g) are determined by the relations (3)—(5).

5. Conclusions

The 2D-QS problems of thermomechanics in stresses for bodies with flat-parallel boundaries have been
formulated. To construct approximate solutions for the formulated quasi-static thermomechanical
problems for an infinite layer and a strip-plate, approximations of stress tensor components’ distri-
butions along the thickness variable with cubic polynomials were utilized. As a result, the original
two-dimensional boundary problems for the layer and strip-plate regarding stress tensor components
were reduced to one-dimensional boundary problems for their integral characteristics. The solutions
to these problems for an infinite layer were found using Fourier transform along the longitudinal co-
ordinate. For the strip-plate, a finite integral transform along the transverse coordinate was applied.
Expressions for stress tensor components were obtained as convolutions of functions describing the
boundary values of these components on the layer bases and the end cross-sections of the strip-plate,
as well as homogeneous solutions to one-dimensional boundary problems for integral characteristics.

The developed methodology for determining stress tensor components in bodies with flat-parallel
boundaries significantly simplifies the analytical general solutions of the formulated 2D-QS thermome-
chanical problems and their numerical analysis for specific temperature distributions and volumetric
forces.
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Flo6y,u,03a pO3B A3KIB ,D,BOBI/lMIpHI/lX KBa3ICTaTVl‘-IHVIX
3aga4y TepmomexaHle Y HAMNPY>XEHHAX ONns TiN
3 nJoCKonapaneJbHnMmm rpaHinusamm

Myciii P. C.

Hauionarvrut ynisepcumem “/Iveiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

3anponoHOBAHO METOJIUKY MOOY/I0BY PO3B’sI3KiB JBOBUMIDHUX KBa3iCTATUIHUX 33849 TeP-
MOMEXaHIKM JIsi TiJ 3 IJIOCKOIAPAJIETbHUMI T'PDAHUIAMA. 38 BUXIJHY BUOpaHa CHCTe-
Ma PiBHSHD IIJIOCKOI KBa3iCTATUYIHOI 3aa4i TePMOIPYKHOCTI y Hanpy:Kenuax. Meroanka
I'PYHTYETHCS HA AIIPOKCUMAITT PO3IMOIITY BIIMIHHUX Bijl HyJIs KOMIIOHEHT T€H30pa HaIpy-
JKE€Hb 110 TOBIUHHIH 3MiHHI# Tina KyOiuanmu nostinomamu. KoedimienTn anpokcuMaritnux
MIOJIIHOMIB BUPAXKaIOThCsl Yepe3 IHTerpasIbHi 0 TOBIIMHHIN 3MIHHIN XapaKTePUCTUKU KOM-
IIOHEHT TE€H30pa HAIIPpY2KeHb Ta 1X 3a/IaHl 'PDAHUYHI 3HAYEHHS Ha HU2KHI 1 BepXHiil ocCHOBax
Tisma. Y pe3ysabTaTi BUXiHA ABOBUMIpHA KpaiioBa 3a/ata Ha KOMIIOHEHTH TEH30pa HaIpy-
2KeHb 3BeJIeHa 10 OJHOBUMIpPHOI KpailoBol 3a/1a4i Ha IX iHTerpaabHi XapaKTepucTuku. s
6e3MeKHOT0 IIapy 3alrcaHO PO3B’SI3KM OJHOBUMIPHOI KPailoBOl 3a/1a4i 3 BUKOPUCTAHHSIM
inTerpanbaoro neperBoperds Oyp’e 3a MO3T0BKHBOIO KOOPAUHATOK. ¥ BUIAJKY CMYyTH-
IUIACTUHU JJIs 3HAXO/2KEHHS PO3B’A3KYy BUKOPUCTAHO CKiHYeHe iHTerpaJjbHe IepeTBOPEHHS
3a HOIEPEYHOI0 KOOPMHATOI. 3allMCAHO 3arajbHi PO3B’SI3KN JBOBUMIPDHUX KPAWOBUX 3a-
JIa< TEPMOMEXaHIK! JJTsT PO3TJISAIYBAHUX TiJT 38 HASBHOCTI B HIX HECTAIIOHAPHUX 00 €MHUX
CIJT Ta TEMIIEPATYPHOTO MOJIA. Bupa3m NMIyKaHuX KOMIIOHEHT T€H30Pa HAIPYKEeHb MOTAHO
y BUIVISIZII 3rOPTOK (DYHKIIIH, 10 OMUCYIOTH 3a3/1aHl 'PAHNYHI 3HAYEHHS IINX KOMIIOHEHT Ha
OCHOBaX PO3IVISIYyBAHUX TiJI, & TAKOXK HA TOPIEBUX IIEPETUHAX Y BUIIA/IKY CMYTHU-IIJIACTHHH
i pyHKIH, M0 OMUCYIOTH OJHOPIAHI PO3B’SI3KM OHOBUMIPpHUX KpaltoBUX 3a/ad Ha iHTe-
rpaJibHi XapaKTePUCTUKHN KOMIIOHEHT TE€H30Pa HAIIPY2KEHb.

KnwouoBi cnoBa: miaa 3 MAOCKONAPAACAOHUMU 2PAHUUAMU; WAD; CMY20-NAGCTIUHA;
KOMNOHEHMU MEHZ0PA HANPYHCEHD; KYOIUHA ANPOKCUMAULA; THME2PAALHE TAPAKMEPUCTIU-
Kxu; nepemeoperts Dyp’e; crinueHe THMEZPAALHE NEPETNBOPEHHA.
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