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This paper presents an innovative approach to blind image deblurring based on fractional
order derivatives and Nash game theory. The integration of fractional order derivatives
enhances the deblurring process, capturing intricate image details beyond the capabili-
ties of traditional integer-order derivatives. The Nash game framework is employed to
model the strategic interaction between the image and the unknown blur kernel, fostering
a cooperative optimization process. Experimental results showcase the proposed method’s
superiority in terms of both Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) when compared to existing methods. The fractional order derivative en-
hances image structure preservation, while the Nash game facilitates joint optimization of
image restoration and blur kernel estimation.
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1. Introduction

Blind deconvolution is a challenging problem in the field of image processing, with applications in
various domains such as astronomy, microscopy, medical imaging, and forensics [1]. This problem
arises when we have an observed image that is a result of convolving an unknown image (the source
or object) with an unknown point spread function (PSF) or kernel, and our goal is to recover both
the original image and the PSF from the blurred observation. Blind deconvolution can be formulated
mathematically as follows, see [2]:

i = k ∗ v + n.

Here: i is blurred and noisy observed image, v is unknown true image, k is unknown blurring kernel,
n is additive noise.

Several methods have been developed to solve this problem as the method proposed by Rudin et
al. [3], where the image recovery problem is stated as follows

min
v

J(v) =
1

2
‖k ∗ v − i‖2L2(γ) +

∫

γ

|∇v| dx dy.

Another approach suggested for addressing the blind deconvolution (BD) problem, proposed by Chan
and Wong in their study [4], involves using the Total Variation (TV) norm, see also [5].

min
v,k

J(v, k) =
1

2
‖k ∗ v − i‖2L2(γ) + α1

∫

γ

|∇v| dx dy + α2

∫

γ

|∇k| dx dy.

They use the TV regularization, significantly, they employ Total Variation (TV) regularization on both
the original image v and the blur kernel k with α1 and α2 are respective positive parameters. The
total variation [5], can be defined as

TV(f) = sup

{
∫

γ

f divφ : φ ∈ C1
0 and |φ|L∞(γ) 6 1

}

.
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Meskine et al. [6] proposes a solution to the blind deconvolution problem using a game theory perspec-
tive. Specifically, they identify the Nash equilibrium to determine the optimal estimation of both the
image and Point Spread Function (PSF), see [7]. In their approach, two functionals are involved and
minimized















Jv(v, k) =
1

2
‖k ∗ v − i‖2L2(γ) +

∫

γ

α(x)|Dv| dx,

Jk(v, k) =
1

2
‖k ∗ v − i‖2L2(γ) +

∫

γ

(1− α(x))|Dk| dx.
(1)

The blind deconvolution process becomes more complex when incorporating Nash game theory [8],
and fractional order derivatives. Our goal in this paper is to examine the synergy between Nash game
theory and fractional order derivatives in the context of blind deconvolution. By combining strategic
modeling of the players involved with finer regularization [9], our approach aims to overcome the
limitations of conventional methods and produce more accurate and robust deconvolution results. In
the following sections, we will detail the theoretical foundations of Nash game theory and fractional
order derivatives, exploring their respective application to blind deconvolution. We then present our
research methodology, illustrate case studies and discuss numerical results.

2. Blind deconvolution using Nash game

Over the years, a variety of strategies and methods have been explored in the field of deblurring to
enhance and recover images. These techniques are designed to address blurriness in images caused
by factors such as motion, defocus, or other distortions [10]. In this paper, we propose to modify
the mathematical model for blind image deblurring presented in [6], such that we use fractional order
derivatives. Our problem to solve is















Jv(v, k) =
1

2
‖k ∗ v − i‖2L2(γ) +

∫

γ

α(x)|Dv| dx,

Jk(v, k) =
1

2
‖k ∗ v − i‖2L2(γ) +

∫

γ

(1− α(x))|Dβk| dx,
(2)

with α(x) is a spatially and scale adapture function given by α(x) = 1
1+λ|∇Gσ∗i|

, where Gσ(x) =

1
2πσ2 exp

(

− |x2|
2σ2

)

is the Gaussian filter with the parameter σ and Dβ is the fractional order derivative
and β could be a fractional number. The order of the fractional derivation can be chosen according to
the expected characteristics of the image. A higher β favors greater regularity.

Calculating fractional order derivatives involves using specialized methods from fractional calculus.
One common approach is to use the Grünwald–Letnikov derivative [11].

The β-order variation of v : γ → R it enhances the conventional total variation (TV) approach by
incorporating fractional order derivatives. Specifically, it relies on Grünwald–Letnikov fractional order
derivatives to introduce a more nuanced and sophisticated dimension to the regularization process, the
discrete fractional order gradient is defined as ∇βv =

[

D
β
1 v,D

β
2 v

]

, where

(Dβ
1 v)i,j =

M+1
∑

m=0

(−1)mCβ
mvi−m,j and (Dβ

2 v)i,j =

M+1
∑

m=0

(−1)mCβ
mvi,j−m.

And M is the number of neighboring pixels using to approximate the fractional order derivative at
each pixel and the coefficient C

β
m is defined as

Cβ
m =

Γ(β + 1)

Γ(m+ 1)Γ(β −m+ 1)
.

Γ(x) is function defined as Γ(x) =
∫∞
0 tx−1.e−t for all x > 0.

Now, we can solve the problem (2) by dividing the optimization variables. We consider a game
where the players act with diverse objectives. The first player chooses strategy v in order to minimize a
function Jv(v, k) and the second player chooses his strategy k in order to minimize a function Jk(v, k).
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Clearly, the objective functions depend on two domains. Therefore, the choice of strategies of one
player influences the choices of the other one. Two players act concurrently until an equilibrium is
found [12]. That means each player has minimized the function with a common pair of strategies:











Find (v∗, k∗) such that
min
v

Jv(v, k
∗) = Jv(v

∗, k∗),

min
k

Jk(v
∗, k) = Jk(v

∗, k∗).
(3)

Theorem 1. There exists a Nash equilibrium (k∗, v∗) solution of the problem (3) [2].

The iterative schemes for (3), can be found by using the corresponding first order optimality
conditions as

∂Jv

∂v
=

∂Jk

∂k
= 0. (4)

To attain a physically meaningful solution, we must impose conditions on v and k. Consequently, we
have opted to enforce the following conditions:

∫

γ

k(x, y) dx dy = 1 and v(x, y), k(x, y) > 0.

The Nash equilibrium is calculated by the subsequent algorithm, as presented in [5].

Algorithm 1 Nash algorithm

1. Initialization: m = 0, the noisy image v(0) and the kernel k(0).

2. Step 1:

Phase 1: Resolve the problem min
k

Jk(k, v
(m)) −→ k(m+1).

Phase 2: Find a solution to the problem min
v

Jv(k
(m), v) −→ v(m+1)

3. Step 2:

and repeat Step 1 until convergence.
There is convergence when ‖k(m+1) − k(m)‖ < ε and ‖v(m+1) − v(m)‖ < ε, where ε is to be specified.

3. Numerical results

We employed the MATLAB software to implement the proposed method. Initially, blurred and noisy
images were synthesized by convolving with a 7×7 Gaussian kernel of σ = 1 and introducing Gaussian
noise with a mean of 0 and a variance of 0.0001. The quality of restoration was evaluated using the
peak signal-to-noise ratio (PSNR) [13] and the structural similarity index measure(SSIM) [5]. Series
of deconvolution experiments were conducted, comparing the proposed method with Meskine et al.’s
approach, the Weiner filter method, regularized filter method, and Lucy–Richardson [14]. We examine
five images, illustrated in Figures 1–5, respectively, for the simulation. The quality of image restoration
results is presented in Tables 1–5, corresponding to each representative image.

Table 1. Restoration of Cameraman image using the different methods.

Compare Our method Meskine method Regularized filter BD algorithm Weiner Filter LR algorithm
PSNR 26.3747 25.7391 20.0116 21.1876 25.0217 22.2625
SSIM 0.92652 0.85959 0.83744 0.7703 0.80001 0.75825

Table 2. Restoration of Barbara image using the different methods.

Compare Our method Meskine method Regularized filter BD algorithm Weiner Filter LR algorithm
PSNR 25.5564 24.4801 24.3658 22.3028 24.0879 24.5585
SSIM 0.85801 0.83562 0.81434 0.72601 0.81702 0.74318

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 923–929 (2024)



926 Semmane F. Z., Moussaid N., Ziani M.

Fig. 1.

Fig. 2.

Table 3. Restoration of houses image using the different methods.

Compare Our method Meskine method Regularized filter BD algorithm Weiner Filter LR algorithm
PSNR 26.6139 24.8291 24.1342 22.2403 25.99320 25.3788
SSIM 0.8813 0.88008 0.82714 0.85453 0.80702 0.77279

Table 4. Restoration of peppers image using the different methods.

Compare Our method Meskine method Regularized filter BD algorithm Weiner Filter LR algorithm
PSNR 28.35270 26.069870 23.706542 27.45630 23.302851 27.20934
SSIM 0.87890 0.84324 0.82514 0.56241 0.88653 0.78510
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Fig. 3.

Fig. 4.

Table 5. Restoration of Lena image using the different methods.

Compare Our method Meskine method Regularized filter BD algorithm Weiner Filter LR algorithm
PSNR 27.8043 27.0532 22.5756513 26.16874 23.03421 22.73401
SSIM 0.87682 0.89563 0.71534 0.68421 0.84582 0.816034
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Fig. 5.

4. Conclusion

In this paper, we introduce a blind image deblurring method based on the Nash equilibrium and the
fractional order derivative. We evaluate the proposed method against five different methods using
grayscale images of the cameraman, Barbara, peppers, house, and Lena. The results show that the
proposed method outperforms some methods in terms of PSNR and SSIM. The application of this
approach to other areas such as 3D deconvolution, medical image restoration or satellite imagery could
be explored. Adapting these techniques to more complex contexts would make it possible to test their
robustness and generality. In summary, the use of the Nash game and the fractional derivative in
blind image deconvolution opens up stimulating avenues of research. Continued exploration of these
perspectives could not only enrich our understanding of deconvolution processes, but also lead to
significant advances in the processing and analysis of complex images.
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Слiпе зменшення розмиття зображення за допомогою гри Неша
та похiдної дробового порядку

Семмане Ф. З.1, Муссаїд Н.1, Зiанi М.2
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2Лабораторiя LMSA, кафедра математики факультету наук,

Унiверситет Мухаммеда V у Рабатi, Марокко

У цiй статтi представлено iнновацiйний пiдхiд до слiпого усунення розмитостi зобра-
жень на основi дробових похiдних i теорiї iгор Неша. Iнтеграцiя дробових похiдних
покращує процес усунення розмитостi, фiксуючи складнi деталi зображення, що пе-
ревершує можливостi традицiйних цiлочисельних похiдних. Iгровий фреймворк Неша
використовується для моделювання стратегiчної взаємодiї мiж зображенням i невi-
домим ядром розмиття, сприяючи спiльному процесу оптимiзацiї. Експериментальнi
результати демонструють перевагу запропонованого методу як щодо пiкового спiввiд-
ношення сигнал–шум (PSNR), так i iндексу структурної подiбностi (SSIM) порiвняно
з iснуючими методами. Похiдна дробового порядку покращує збереження структури
зображення, тодi як гра Неша полегшує спiльну оптимiзацiю вiдновлення зображення
та оцiнку ядра розмиття.

Ключовi слова: деконволюцiя; зменшення розмитостi зображення; оптимiзацiя;

гра Неша; повна варiацiйна регулярiзацiя; похiдна дробового порядку.
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