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Abstract. This article presents the research of texture enhancement algorithms on medical
images. Medical MRI brain scans contain large areas with low level grey colors that carry useful
information for doctors. Texture improvement allow to highlight large grey areas on images for
future detailed recognition. Based on the study of existing texture enhancement methods, it was
determined that fractal operators are effective for processing medical images. The mathematical
framework of fractal operators is presented based on the approximation equation of the Griinwald-
Letnikov fractional derivatives. The creation of fractal differential masks and the algorithm of masks
usage for image enhancement are described based on this equation. The approximation error of the
Grunwald-Letnikov derivative is calculated in comparison with the analytical value of the
Grunwald-Letnikov derivative. The algorithm based on the fractal derivative shows improvements in
image parameters such as contrast, correlation, energy, and homogeneity compared to the original
image parameters. A comparison of the results of the algorithm based on the fractal differential with
other algorithms for improving the texture of images is also given. It is concluded that the fractal
differential algorithm is well-suited for MRI image enhancement tasks, unlike other algorithms, both
in visual comparisons and numerical metrics, and thus can be applied to solve real-world problems.

Keywords: Medical images, Magnetic Resonance Imaging (MRI), fractal operators,
algorithms, Python, image enhancement.

Introduction

Medical images play a crucial role in modern medicine, allowing doctors to obtain important
information about patients' health. They provide the ability not only to visualize internal or external
structures of the body, such as organs and tissues, but also to perform more accurate diagnoses of diseases
and abnormalities. With medical imaging, doctors can timely identify issues and develop individualized
treatment plans, which is critical for improving the quality of life and treatment outcomes for patients.

Magnetic Resonance Imaging (MRI) is one of the most common medical imaging methods that
provides detailed images of internal organs and tissues. The high resolution and contrast of MRI images
allow for the detection of pathological changes at early stages. However, the quality of MRI images can
bereduced by various artifacts and noise, which requires the use of image enhancement techniques to
increase their diagnostic value.

There are various methods for enhancing MRI images to obtain clearer, more detailed, and
informative images. Improvements can be made to equipment and signal acquisition methods to ensure
better sensitivity and reduced noise in images. Additionally, minimizing artifacts on MRI scans can be
achieved by better stabilizing the patient in the MRI machine during scanning. However, these
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enhancement methods are not always applicable. In practice, images of different resolutions are often
analyzed, frequently displaying visible artifacts, noise, and blurred contours. Considering such image
shortcomings, it is better to use computer processing algorithms to improve image quality [1].

Problem statement

The object of the study is the textures of medical MRI images.

The subject of the study is the methods and algorithms for improving MRI image textures using
fractional derivatives.

The goal of the work is to apply mathematical tools, develop algorithmic and software solutions for
improving medical MRI image textures using fractional derivatives, and enhance image processing and
analysis quality. To achieve this goal, the following sub-tasks can be identified:

* Review theoretical aspects of fractional differential and their usage in signal and image processing.

» Develop an algorithm for enhancing image textures using fractional derivatives.

« Develop a software implementation of the texture enhancement algorithm.

« Conduct experimental studies to evaluate the effectiveness of the developed algorithm.

» Compare the results of improving image textures using the fractal derivative with other methods.

* Analyze the obtained results and provide conclusions about the feasibility of using the fractal
derivative to improve image textures.

Scientific novelity of the work lies in the development of an algorithm and software for improving
the textures of medical MRI images using fractional derivatives. The developed algorithmic and software
tools will enhance the quality of medical MRI images for further analysis by doctor.

The practical significance of the work lies in applying the software and algorithmic tools for
enhancing the textures of medical MRI images using fractional derivatives in various fields of medicine.
This method improves MRI image quality, which contributes to more accurate diagnosis, better visual
representation, and enhancement of automated systems for recognizing and classifying pathologies in MRI
images.

Review of Modern Information Sources on the Subject of the Paper

It can be observed that most existing methods for texture enhancement are based on integer-order
derivatives. Such algorithms include the Laplacian filter, the Sobel algorithm, and the Pruitt algorithm [2]-
[4]. These algorithms rely on classical differential operators and enhance images by strengthening edges,
contours, and other details. Edge and contour enhancement is achieved by applying filters to the original
image. The filter calculates the change in brightness between neighboring pixels — the gradient, the higher
gradient values indicating the presence of edges. However, these algorithms have certain drawbacks:
insufficient flexibility to highlight details of different scales, which may lead to the loss of some structures
in the image; potential ineffectiveness in processing thin and complex structures; and possible orientation
sensitivity, resulting in incorrect edge detection depending on their orientation. There is also a method for
image enhancement based on wavelet transformation [13]. This method involves decomposing the image
into different frequency components. Such decomposition allows isolating details of different scales at
different frequency levels and subsequently processing each frequency separately, thus improving image
quality. The main drawbacks of the wavelet method for image enhancement include the complexity of
configuration, computational intensity, potential information loss, and insufficient effectiveness for very
fine details. Work [16] implemented one of the fractal methods and investigated its impact on automatic
segmentation of intracerebral hemorrhages in CT scans using artificial neural networks.

Returning specifically to the specifics of medical images, it is important to note that MRI images are
characterized by relatively small, thin structures of various scales, as well as large smooth areas where the
color does not change significantly. Additionally, the structures on the MRI image are usually self-similar,
they have the properties of self-repetition on different scales, self-similarity means that there is similarity
between certain pixels and areas of pixels in terms of gray color. Given the above-described characteristics,
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it is fractal operators that are suitable for processing MRI images.

Fractional differential operators (fractals derivatives) are generalizations of classical differential
operators. They allow differentiation of non-integer orders, which opens new possibilities for signal and
image analysis and processing. The use of fractional differential operators allows better control over the
enhancement of different frequency components of an image, which is particularly useful for improving
textures and highlighting details. Different degrees of enhancement allow to open various details of the
structure by adjusting the enhancement level. This article uses fractional differential operators to improve
image quality and increase contrast.

Objectives and Problems of Research

The fractal differential mask save low frequencies in smooth regions of the image and high
frequencies where there are significant changes in intensity, thereby enhancing texture details in areas
where intensity changes are less noticeable. Since noise is characterized by high frequency, applying a
high-frequency filter to an image not only enhances the elements of interest but also significantly increases
the level of noise. The proposed by Yui-Fei, Pu, and others [5] allow to bypass this shortcoming, based on
fractional-order derivatives (also known as YuiFeiPU operators). The article suggests several methods for
constructing such masks based on Riemann-Liouville and Griinwald-Letnikov derivatives. However, the
literature review did not reveal studies on the impact of such enhancement using fractal operators for MRI
images in the context of comparison with other algorithms. This work is also dedicated to implementing
algorithms for processing MRI images using fractal operators.

Main Material Presentation

The fractional differentiation framework

This chapter describe the necessary theoretical background for fractional differential [17] usage in
signal processing, also the approaches approaches underlying fractional differentiation are explained.

There are several ways to determine the derivative of fractional order. Common generalized
derivatives include the Riemann-Liouville, Griinwald-Letnikov, and Riesz derivatives.

The Riemann-Liouville fractional derivative of order v (0<v<n) can be expressed by the formula:

v _dn d B (x-a)'sW*(a) 1 ¢ s
P800 =4 [d(x—a)T (o = kz(; rk—v+l)  I(n-v) I (x—¢) de @

where n is the smallest digital number bigger than v.
Fractional derivative of order v based on Griinwald-Letnikov fractional differential is
expressed by the formula:
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Where signal length s(x) is in [a,x], v-any real numbers (including fractal). D\F:_L— the

Griinwald-Letnikov fractional differential operator. I" - the gamma function, an extension of the
factorial concept to real numbers.
From formula (2) fractional differential can be expressed as follows:

vepr . L Tk=V) [ [X-2a
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Formula (3) represents the fractional differential for the signal s(x), specifically the numerical
approximation of the fractional differential.
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The mathematical framework for constructing the mask overview

Based on the above definitions, the main steps for applying the fractional operator to construct
fractional differential masks, as described by the authors in [5], and the algorithm for their use are
presented.

According to formula (3) assume that a=0, let’s divide signal s(x) on N equal parts, the duration
belongs to interval [0, x]. N+1 nodes obtained, which in context of image processing allows the processing
of N+1 pixels.

Sy =35(0)
Sy =S(x—ks/N), (4)
Sy =S(X)

For large enough N, formula (3) can be simplified to the form:
dv ~ x YN~ N*l]“(k—V) *S(X—ﬁj— XN N—lr(k_v) .
ax'  I'(—v) & T(k+1) N) () &k ()

The signal value can be rewritten as following s(x+(vx/2N)-(kx/N)), according to formula (5)
it will take the form:

\ -V -V N-1 _
d" x'N Ik V)*s(x+ VX kxj’

dx'  I(~v) ; r'(k+1) 2N N

2N N (6)

Comparing formula (5) with formula (6) we can say that in (6) the signal value s(x) is introduced at
non-node points, except for v=0, +-2, +-4... Substituting the values v=-2, 0, 2 into signal s(x+(vx/2N)-
(kx/N)), neighboring signal points obtained, such as: s(x+(X/N)-(kx/N)), s(X-(kx/N)), s(x-(X/N)-(kx/N)).
With these 3 neighboring signal points, Lagrange interpolation can be used to create polynomial
interpolation.

The interpolation polynomial for the signal S(x) has the following form:

kx X kx
(§=x+- )T =X+ —+7)
_ N NN X _kx
S(¢)= o S(X+N N)
N?
k k
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Next, considering that &=x-+(vx/2N)-(kx/N), the signal value will take the following gorm:

133



Volodymyr Bereziuk, Yaroslav Sokolovskyy
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Substituting formula (8) into (6) the following expression received:

2
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In computer vision, objects and filters have limited values. Also a pixel in an image has s specific
color value that is limited, the smallest distance in the two dimensional image between two pixels for x and
y coordinate is one pixel, Therefore, the length of the signal can be defined as the size of the image matrix,
where x is in range [0,x], for y is in range [0,y], it can be said that the distance in the x and y coordinates:

h,=(x/N)=1 and h =(x/N)=1 respectively, and the biggest value to which the distance can be
divided being N, =(x/h,)=[x], N, =(x/h ) =[y], [5].

For k=n<=N-1, from formula (9) the partial approximation for n+2 for negative values along x and y
coordinates can be expressed as:

d's(x,y) \ ﬁ _ﬁ_ﬁ
—_(4+ 8}5(x+1,y)+(1 i 8JS(X1Y)+

dx’ r'(-v)

o A P S’ ¥ G O S o Y

~ o (k+1)! 8 4 k! 4 (k =1)! 8 4

(ky){u(l_Ju[__ﬂ W
(n=D)1(-v) 4 ) (n=2)r(~v) (4 8

*efv I'k-v+1) Vv

s(x n+1,y)+—(k+1)! [8 4} s(x—n,y)

d's(x.y) v, v° LY 1

d—yv_[4+8Js(x,y+1)+(l 1 8js(x,y)+r(_v)

WS LKV [V V) TRV g V) TV, (v v

= (k+1)! 8 4 k! 4 (k —1)! 8 4

*“Ky_@+L£m;&ﬂz*@_fj+lﬂtﬂ;éﬁ{x+fJ} - ®
(n=D)1(-v) 4 ) (n=-2)r(-v) (4 8

ws(xy—nad)s LEVFD (V2 Ve y
s(x,y—n+1)+ KD (8 4j s(x,y—n)

134



Enhancement of Medical MRI Images Based on Fractal Operators

[ e 0 0 |C 0
0 |c 0 0|c| 0
0 |c 0 0G| 0 :
: ofofo 0 oflo]|o ofofo 0 ofofo
0 fc| o 0 |Ca| 0 Cs, |Cs,.,|C C. c, | G | C (5N o & C. Cs, [ Ca|
H ofofo 0 oflo|o ofofo 0 ofofo
0fc.| o 0 |C..| 0 :
0 |G| 0 0 |c 0
0 |G 0 0 |G 0
a) b) c) d)
0 |C 0 |C, Cs, | 0 [ 0
o | 0 o|c,| o o |c.| o o|c.| o
0 |c 0 0 |G| o0 ilolc| o o|c, | o
0 0 0 0 0 0
C. 0 C. 0 C, | o0 Cs 0
0 0 0 0 0 0
0|C |0 0 |G| 0 ifo|c.|o 0 |C 0
ofc.| o 0 |c | 0 0cy| 0 0 |c 0
[ 0 [ 0 [ 0| C
€) f) 9) h)

Fig. 1. Masks for the eight directions: (a) W1 negative along the x-axis; (b) W2 positive along the x-axis; (c) W3
negative along the y-axis; (d) W4 positive along the y-axis; (¢) W5 left-upward diagonal; (f) W6 right-downward
diagonal; (g) W7 right-upward diagonal; (h) W8 left-downward diagonal [5]

In Fig.1, masks corresponding to the eight symmetrical directions are shown(a) W1 negative along
the x-axis; (b) W2 positive along the x-axis; (c) W3 negative along the y-axis; (d) W4 positive along the y-
axis; () W5 left-upward diagonal; (f) W6 right-downward diagonal; (g) W7 right-upward diagonal; (h)
W8 left-downward diagonal. These masks allow to calculate the fractional differential in eight symmetrical
directions. The presence of these eight masks also creates anti-rotation capability, enabling same
processing results regardless of the texture's position on the image. At Fig.1 Csi1 is the pixel mask

coefficient S, =s(s+s/N) i C is the pixel coefficient S, = s(x) . Formula (10) and (11) also show that

when k->n=1 then a mask size of 3x3 is obtained, when k->n=3 then mask of size 5x5, when k->n=2m-1,
this can be expressed by the formula n = (2m+1) x (2m+1), where n usually add numbers.
According to formulas (10) and (11) mask coefficients W1-W8 are calculated using the formulas:

2

Cs :!+V_
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Ve v
Co=l=5+3% 1

2 2 2
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“« I'(-v) (k+1)! (4 8 k! 4 (k=1)! 4 8
The algorithm error estimation
The mathematical framework presented in the previous section is based on the approximate
calculation of the fractal differential value. The differential value for the approximate calculation and the

analytical value will differ. This section presents the calculations of the relative error for the approximation
described in formula (9). The relative error from fractional derivatives can be calculated using the formula:
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In formula (13) (V ) algorithmic value and (V )the fractional differential analytical
algo

value. Algorithmic value can be expressed by the formula from [5]:

_( kxjp v([ X kxjp ( X kxij
X—— | +=| [ X+ === | = Xx=—m =
dep B X7VN7V N-1 F(k—V) N 4 N N N N

dX" aigo ) =) gf(k—i-l) v? (( X kxjp_z( kX)p+(x X kx)pJ | (14)
N

The fractional differential analytical value can be expressed by the formula:
d'x?  I'(p+hHx*™
v o P> -1, (15)
dx I'(p—-v+l)

Substituting the values x=1, p=1.5, N=[0;10], v=[0;1] the relative error ¢ for fractals of different
orders is calculated:

0.6

0.4

0.2

Fig. 2. The graph of the dependence of the error ¢ on the parameters v and N.

On Fig. 2 displayed the dependence of the error ¢ to the fractional order value v, and value N. The
error value o is big for small N values and almost consistently small for bigger N values, also the changes
of the value v have little impact on the error value. If n-mask size and assuming that N=n the error
calculated for different mask values:
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Fig. 3. The graph of the dependence of the relative error ¢ to the fractional order v

On Fig. 3 displayed the dependence between ¢ and v, small masks have the worst precision. A large
value of N allow to decrease error value, but not significantly. A mask size N=7 is good enough for use in
calculations and allow relatively quick computation.

Software implementation

The software implementation of the algorithm for improving the textures of medical images was
performed in the Python programming language[6]. OpenCV[8] as well as scipy[7] and numpy libraries
were used for image processing.

The sequence of the algorithm is as follows: The first step is to read the input image in greyscale. As
a result of reading, the two-dimensional array of pixels received, where the color of each pixel is coded by
256 bits. Next, based on Fig.1 eight matrices W1-W8 created. The matrix dimensions was selected as 7x7
according to the arguments given in the section above and estimates according to Fig. 3. The coefficients
of the mask are calculated according to the formula (12), where k is the corresponding index of the
coefficient and depends on the size of the matrix, v is the value of the fractal order. It is important to note

that coefficient values C; and C; are calculated according to partial formulas, all other C are calculated

according to general formula for calculating coefficients. The next step is convolution [10] operations on
the images. The operation of convolution of the original image with each of the eight masks W1-W8 is
performed by using the convolution function from scipy library. As a result of these operations, the eight
images, respectively, in eight directions received, each image showing improvements in each separate
direction. The next step is to combine all eight matrices into one, summing all the matrices and then
normalizing the combined matrix, since when summing the gray values can go beyond [0,255] values.
Save the resulting image into file.

An important element of research is the selection of a set of input data, the main problems are: the
data accessibility, as medical data contain confidential information; the data representability; image
guality; format compatibility. An anonymous (depersonalized) set from the resource[10] containing
hundreds of brain MRI images in jpg format was chosen for our research, but our algorithm can read
images of any extensions and various sizes. Most of the images have a size of 512x512 pixels, which is
more than enough to analyze the details. It is also worth noting that the described algorithm can process
images of any size; however, this will affect the algorithm's performance, as the convolution operation is
quite resource-intensive.
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Results and Discussion

Visual comparison

Applying the software implementation of the algorithm for improving medical images for brain
MRI, in the interval from v[0.5;0.9] with a mask of size 7x7, improved MRI images were obtained Fig. 4.
(b), (c), (d), (e), (F). The images shows that the value of the order of differentiation v acts as the degree of
image improvement, the more the value of v increases, the more gray colors disappear from the image, and
as a result, the actual loss of gray areas of the image is obtained, while the edge areas become more visible.
For the value v=0.5, on the contrary, the gray areas are strengthened, they became more visible, at the same
time, the edges of the areas are quite strongly defined.

According to the visual comparison, it can be concluded that the fractal differential mask is suitable
for improving images. Changing the value of v allows to change the degree of visibility of certain areas.
Additionaly, it is also observed that neighboring levels of order v look very similar, which means that there
is a continuous interpolation of the fractional differential for derivatives of neighboring orders.

Fig. 4. Brain MRI (a) original image, (b) improved by fractional derivative of order 0.5, (c) improved by fractional
derivative of order 0.6, (d) fractal derivative of order 0.7, (e) fractal derivative of order 0.8, (f) fractal derivative of
order 0.9
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e) f)

Fig. 5. Brain MRI (a) original image, (b) enhanced with fractional derivative of order 0.5, (c) enhanced with
fractional derivative of order 0.6, (d) upper right part of image (2), (¢) enhanced image (d) with fractal derivative of
order 0.5, (f) crossed image (d) fractal derivative of order 0.6

Let's also consider Fig.5 for comparison, it shows both the full MRI image (a) and its enhancements
(b), (c), and the upper right part of the image (d) and its enhancements (e), (a). Reviewing the enhanced
images using the fractional derivative, it can be concluded that the enhancement occurs regardless of the
size and structure of the image. This implies that the fractional differential algorithm effectively handles
enhancement at different image scales.

Image parameters comparation
To compare the parameters of images, the Gray-Level Co-Occurrence Matrix (GLCM) [11] will be

used. This mathematical tool is used for texture analysis and represents a table describing how frequently
pixel pairs occur in the image at a certain distance and in a particular direction. By constructing this matrix
for the original image Fig. 4 (a) as well as for the enhanced images based on the fractional mask algorithm,
analytical parameters such as contrast, correlation, energy, and homogeneity of the image can be obtained.
Contrast — measure difference of intensity between pixel pair, reflecting the degree of local
variations within the image.
contrast= > (i— j)*P(i, j) .

] (16)
Formula (16) allow to calculate contrast, P(i,j) GLCM matricx coefficient, i,j — indices of

matrix P.
Correlation — measure how the value of pixels linked with their neighbors across whole

image.
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corretation 3" (=M1 =P, 1),

i 0i0 (17)

a=\/%i<p(i,j)—ﬂ) , (18)

Formula (17) used for calculation correlation value between pixels, P(i,j) GLCM matrix coefficient,
I,j —matrix indices, p,ip;- average value in matrix row and column, g;g; — standard deviations
thatcalculated by the formula (18).

Energy - measures the texture of an image by showing the sum of the squares of the GLCM
elements. High energy values indicate the presence of regular textures (19).

energy= > P(i, j)*,
i

(19)
Homogeneity — determines the closeness of the GLCM element distribution to the GLCM
diagonal. High homogeneity values indicate textures with little variation in gray levels (20).
p(Q, j)
h="> —==,
IZJ: 00 (20)

Let's construct a matrix for the original image with the following input parameters: a pixel distance
of 5 and angles of 0, 45, 90, and 135 degrees. Table 1 shows the gray-level matrix parameters for different
angles of the original image.

Table 1
Analytical Data of Gray-Level Matrix for Original Image
Angle 0 45 90 135
Contrast 781.13 721.47 778.21 763.37
Correlation 0.76 0.78 0.76 0.77
Energy 0.06 0.06 0.06 0.06
Homogeneity 0.22 0.22 0.23 0.22
a)ii b)
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Fig. 6. The graphs for contrast (a), correlation(b), energy(c), homogeneity(d) for four angles in dependence from
parameter v

Figure 5 shows the dependence of the value of: contrast (a), correlation (b), energy (c) and
homogeneity (d) from the value of the v-fractional derivative. The values of contrast, correlation, energy
and homogeneity are given for four angles of 0, 45, 90, 135 degrees. All four curves show the same
interdependence from the value of v, which means that the change in the value of contrast, correlation,
energy, and homogeneity occurred uniformly in all directions.

Let's review each graph separately. In Fig. 5, graph (a) shows that the contrast of the image increases
and reaches its peak between the values of v = [0.4, 0.7], a high contrast value indicates that the image
becomes clearer and the textures are more visible. Comparing the top contrast value with the contrast value
in Table 1 for the original image, there is a significant improvement, approximately 3-4 times. Moving on
to correlation in Fig. 5, graph (b), the correlation significantly decreases as the value of v increases, this
means that pixel intensities at a certain distance are less likely to have a linear dependency, indicating a
nonlinear enhancement of pixel color values. Compared to the original image, the correlation also
decreases. The energy values in Fig. 5, graph (c) show the lowest values also in the range of v = [0.4, 0.7],
which means that the texture changes in the image become more irregular and inhomogeneous, making
them sharper. Comparing the energy of the fractal differential images with the original image, we also note
that it decreases for the enhanced image. The fourth indicator is the homogeneity of the image, shown in
Fig. 5, graph (d). Homogeneity shows the lowest values in the range of v = [0.4, 0.7], indicating that the
image has a less uniform structure. A less uniform structure implies increased sharpness.

According to the above analysis of contrast, correlation, energy and homogeneity values, it can be
concluded that the values of the fractional derivative parameter v in the range v = [0.4,0.7] are the most
optimal for use, which coincides with the visual comparisons above.

Comparison of result analysis with other algorithms
This chapter presents a comparison of the fractal differential algorithm with other image

enhancement algorithms. The comparison includes algorithms commonly used in the field of computer
vision, such as the nonlinear image enhancement algorithm based on Laplacian pyramid transformation
[12], the wavelet algorithm [13], and the Sobel algorithm [2].
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d)

Fig. 7. MRI of the brain: (a) original image, (b) enhanced with fractional derivative of order 0.5, (c) enhanced with
fractional derivative of order 0.6, (d) enhanced with the nonlinear Laplacian pyramid transformation algorithm, (e)
enhanced using the wavelet algorithm, (f) enhanced using the Sobel algorithm.

From Fig.7. it is evident that the fractional differential algorithm (b) and (c) significantly improved
the original texture (a), similar to the Sobel algorithm (f) and the nonlinear Laplacian pyramid
transformation algorithm (d). The wavelet algorithm (e), however, did not provide as significant
improvement as the beforementioned methods. The Sobel algorithm enhanced edge areas well, but large
relatively homogeneous regions, which also contains a lot of information just become black. Data loss in
large, relatively homogeneous areas is unacceptable for image enhancement algorithms. The nonlinear
Laplacian pyramid transformation algorithm has a serious drawback: it introduced some artifacts (noise)
into the enhanced image. The fractional differential algorithm, on the other hand, improved all areas of the
image without introducing noise. It can be concluded that among the examined algorithms, the fractional
differential algorithm performed the best in enhancing texture.

The next step in the analysis is to compare the characteristics of image enhancement algorithms
using such parameters as: information entropy and average image gradient.

Information entropy [14] is calculated by the formula:

H() = p(x)10g, p(x). 1)
i=1
From formula (21) H(X) —information entropy value, p(x;)—iMOBipHiCTh BUHUKHEHHS NOAIT X;, N —

the number of unique pixel values. The value of information entropy corresponds to the complexity and
randomness of the image.
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Average gradient [14] it is calculated as the average value of the sum of all image pixels. It
represents the degree of change in pixel intensity, which corresponds to the sharpness and contrast of the
image. [6].

Table 2
Numerical Comparison of Algorithms
Image Information entropy Average gradient
€)] 5.46 35.42
(b) 5.93 67.73
(c) 7.02 48.14
(d) 5.6 47 4
(e 5.47 35.48
® 5.93 46.73

In Table 2, the parameters of information entropy and average gradient for the images from Fig. 7
are shown. It can be seen that the Laplacian pyramid transformation algorithm (d) has a higher average
gradient value than the original image, but it almost does not improve the information entropy. The
wavelet algorithm (e) shows a better average gradient value, but the information entropy remains nearly
the same as in the original image. The Sobel algorithm (f) slightly improves the information entropy but
worsens the average gradient value. The fractional differential algorithm improves both information
entropy (b), (c), indicating increased complexity and thus enhancement of textures, and significantly
improves the average gradient value, almost doubling it, which in turn indicates improved image
sharpness.

Summarizing the above comparisons of the algorithms, it can be stated that the algorithm based on
fractional differential masks effectively enhances both relatively smooth areas, where changes in gray
color values are not visually noticeable, as well as the contours in the image.

Conclusions

According to the results of the conducted research, namely: a review of the mathematical apparatus,
the creation of an algorithm, and the software implementation for improving the textures of medical MRI
images using the fractal derivative, the following conclusions can be drawn:

¢ The review of the theoretical aspects of fractal operators confirmed their potential for medical
image processing. This approach allows for the effective processing of complex self-similar structures
characteristic of medical images.

¢ The developed algorithm for constructing masks, calculating coefficients for masks, and applying
masks for image processing demonstrated its effectiveness. The choice of eight masks allowed for image
enhancement regardless of the position of the element in the image. The selected mask size of 7x7 was
optimal and provided a sufficiently low error in calculations.

¢ The implementation of the software in the Python language made it possible to use partially ready-
made functions for mathematical processing and ensured a sufficiently high execution speed. Also, this
algorithm can be easily integrated independently or comprehensively into a medical image processing
system.

e Experimental studies showed a significant improvement of textures for the order of the fractional
derivative in the range v = [0.4;0.7] compared to the original image, which confirms the effectiveness of
the fractal derivative in this context.

e Conducted comparisons of improved image textures using the fractal derivative with other
methods indicate the advantages of the fractal approach. On improved textures, details are saved and
contrast is increased, especially in large, relatively homogeneous areas of the image. With the help of
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numerical parameters, it has been proved that the value of the average gradient of the image has increased
by two times.

The findings confirm the feasibility of using the fractal derivative to improve the textures of medical
MRI images, especially in cases where detailing of structures is required. Thus, the application of the
fractal derivative is a promising direction for further research and development in the field of medical
image processing in order to improve their quality and analysis.
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MNOKPAIIEHHA MEJUYHUX MPT 305PAKEHDb HA IIIICTABI ®PAKTAJIBHUX OITIEPATOPIB
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Anortanisg. B naniii crarti Oyno mpoBeieHO AOCTIKEHHS alrOpUTMIB MOKpAmIeHHS TEKCTYp Ha
Meau4HUX 300pakeHHsX. Memuuai MPT 3HIMKM MO3Ky MICTSATH BeNHMKI 00NacTi 3 HU3BKUM pPiBHEM Ciporo
KOJIBOPY, IO HECYTh BXJIMBY iH(OpMAIlito s Jikapie. [lokpalieHHs TEKCTypH JTO3BOJISE BUIUIATH BETHKI
cipi oOxacTi Ha 300paXeHHSX JUI1 TOAAIBIIOTO JETAIBHOIO pO3IMi3HaBaHHsA. Ha OCHOBI mpoBeneHOTro
JOCITI/DKEHHSI HAasBHUX METOZIB IMOKpAIIeHHS TEKCTYp BH3HAUCHO, IO caMme (ppakTaibHI OIepaTtopu €
e(peKTUBHUMHU JuIsi OOpoOKM MeIW4YHuX 300pakeHb. HaBeneHo MaTeMaTWuHHMH amapaT (paKkTaJTbHUX
OIIepaTopiB Ha OCHOBI PIBHSHHS anpokcuManii ¢pakranbHux moximHux ['pronBanbna-JleTHikoBa. basyrounce
Ha PIBHSHHI OIMCY€ETHCSI CTBOPSHHS (PpaKkTaIbHUX AU(PEPEHIIHUX MAaCOK, Ta aITOPUTMY 3aCTOCYBaHHS IAaHUX
MacoK Ui TIOKpAIlleHHS 300pakeHb. [IpOBOAMTHCS MOCHIHKEHHS TMOXMOKH ampOKCHMAIli MOXiqHOT
I'pronBanbna-JleTHikoBa B TOpIBHSAHHI 3 aHATITHYHUM 3HA4YeHHAM moxigHoi ['proHBanbaa-JleTHiKOBA.
ANTOpPUTM Ha OCHOBI (PpaKTANBHOI MOXIJHOI MTOKa3ye MOKPAIIEHHS 10 TaKUX Mapamerpax 300paskeHHs sK:
KOHTPACT, KOPEJIALisl, EHEeprisi Ta TOMOTEHHICTh B TOPIBHSHHI 3 TTapaMeTpaMu OPHTiHAIBHOTO 300pakeHHS.
Takox HaBelleHO MOPIBHSIHHS Pe3yJbTaTiB alIrOPUTMY HY OCHOBI (hpakTalbHOTO audepeHiiana 3 HIMMHA
QITOPUTMAMH  JIJIsI TIOKPAIleHHS TEKCTYpH 300paxkeHb. [IpuxXoauMmo 110 BHCHOBKY 110 (paKTaabHU
nudepeHIiaabHUi anropuT™M J100pe MiagXo uTh s 3aaad nokpamieHHs MPT 300pakeHb Ha BiMiHY Bif
IHIIMX aJTOPUTMIB SIK IO Bi3yaJbHHMX MOPIBHAHHAX TaK 1 32 YMCJIOBUMH ITOKa3HMKaMH, a OTXKe MOxe OyTH
3aCTOCOBAHMH JUIsl BUPIIIEHHS pealbHUX 3a/1a4.

KuarouoBi ciaoBa: Meauuni 300paxenHs, MarnitTHo pe3oHaHcHa Tomorpadis (MPT), ¢pakranbhi
oreparopu, aaroputmu, Python, nokpamieHHs 300paxeHs.
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