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Abstract. The article is dedicated to constructing difference approximations of fractal 

operators in a mathematical model of the impact of chemotherapy on the state of a cancerous tumor, 

based on fractional calculus using the Caputo derivative. A mathematical model of stem cells and 

chemotherapy is presented. Numerical algorithms for implementing fractional-order mathematical 

models have been developed using the Atangana-Toufik method. The UML diagram of the software 

application and its development process are described. The impact of fractal characteristics (long-

term memory) of chemotherapy on the state of a cancerous tumor is analysed. The presence of a 

fractional-order time derivative as a parameter of the solutions provides important information for 

predicting the effects of chemotherapy on the tumor's state. 

Keywords: fractional order model, fractional operators, atangana–toufik method, cancer 

tumor python, R language. 

Introduction 

The investigation of interactions between immune cells and tumor cells seeks to elucidate how the 

immune system engages with cancer cells to develop more effective treatments for oncological diseases. 

The study of these interactions necessitates the use of diverse methodologies to examine the complexity of 

these relationships [1,2]. A significant challenge arises when cancer cells attempt to divide and proliferate, 

sustaining themselves by forming new blood vessels, a process known as angiogenesis. In doing so, the 

tumor compromises surrounding healthy tissues and may disseminate throughout the body via a process 

referred to as metastasis. 

Mathematical modelling plays a pivotal role in forecasting tumor progression and evaluating the 

efficacy of therapeutic interventions based on available data concerning the behaviour of immune and 

cancer cells. The modelling of the metastatic process represents a sophisticated scientific approach, 

enabling the exploration of the mechanisms by which cancer cells spread from the primary tumor to other 

organs and tissues. This is a critical phase in cancer research, as metastasis constitutes the principal cause 

of cancer-related mortality. To model metastasis, various experimental, computational, and mathematical 

techniques are employed, alongside both in vitro and in vivo models. 

Mathematical models are utilised to describe and predict the spread of metastases. These models 

often involve differential equations that characterise the growth rate of the primary tumor, cellular 

invasion, migration, colonisation, and the expansion of metastatic sites. The development of such models is 

also integral to the creation of computer simulation systems, which enable the construction of virtual tumor 
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models. These models are instrumental in assessing the potential efficacy of therapeutic interventions and 

in studying the interactions between tumor cells and the tumor microenvironment. 

Thus, metastasis modelling is a multifaceted approach that combines cell-level experiments, 

innovative mathematical models, and computer simulations. This comprehensive strategy not only 

enhances the understanding of the mechanisms driving cancer dissemination but also facilitates the 

development of therapeutic strategies aimed at preventing the progression of metastasis. 

Fractal models are crucial for simulating complex processes such as metastasis, due to their ability to 

describe the dynamics of systems with memory and multi-scale time layers, which are characteristic of 

biological systems, particularly in tumor growth and metastasis spread. 

Fractional calculus plays a significant role in modelling the process of metastasis, as it allows for the 

consideration of the intricate dynamics of biological processes, such as the dissemination of tumor cells 

and their interaction with the organism. One of the key advantages of fractional derivatives is their ability 

to model processes with "memory," accounting for all previous states of the system. This is particularly 

important for complex phenomena like metastasis [3]. Conventional mathematical models often fail to 

capture all influences that accumulate over time, whereas fractional calculus can provide more accurate 

predictions regarding tumor progression and response to treatment. 

The use of fractional derivatives enables the modelling of anomalous diffusion processes in tumor 

cells within tissues, accounting for variations in their movement when the cells do not follow classical 

Brownian diffusion laws. This is characteristic of the spread of cancer cells through blood or lymphatic 

vessels [4]. Moreover, fractional models can incorporate information on pharmacokinetics and 

pharmacodynamics, allowing for the prediction of the efficacy of various treatment methods, such as 

chemotherapy or immunotherapy, and facilitating personalised approaches in medicine. 

Research in this field encompasses the application of fractional calculus to model the evolution of 

cancer cells and to predict treatment efficacy [5]. This article presents an overview of the application of 

fractional calculus in cancer research, particularly in the modelling of tumor growth and metastasis spread. 

Mathematical models that account for the complex dynamics of tumor processes and their interactions with 

the microenvironment are considered. For instance, the development of models to study metastases in bone 

tissues using fractional derivatives allows for a more precise assessment of therapy's impact on various 

types of cancer. This approach enables the tailoring of individual treatment protocols for each patient, 

considering the specific progression of their disease. Thus, the development of fractal mathematical models 

that can aid in predicting chemotherapy efficacy and optimising treatment regimens is of great importance. 

Problem Statement 

The object of the study is the process of chemotherapy's impact on the state of a cancerous tumor. 

The subject of the study is the mathematical and software tools for modelling the effect of chemotherapy 

on the state of a cancerous tumor using fractal methods. 

Aim of the work: The construction of a mathematical model using fractal analysis methods and the 

development of software-algorithmic support to assess the impact of chemotherapy on the state of a 

cancerous tumor. Objective: To build a mathematical model using fractal analysis methods and to develop 

software and algorithmic support for the effect of chemotherapy on the state of a cancerous tumor. 

The achievement of the objective includes the following tasks. Analysis of fractal mathematical 

models of the effect of chemotherapy on the state of a cancerous tumor, taking into account long-term 

memory. Analysis of the mathematical model of the effect of chemotherapy on the state of a breast cancer 

tumor, taking into account the effect of long-term memory. Construction of difference approximations of 

fractal operators of the model. Development of algorithmic software. Software implementation of the 

model.  

Validation of the mathematical model. Analysis of the influence of the fractal characteristic (long-

term memory) of chemotherapy on the state of a cancerous tumor. 

Practical significance. The synthesised mathematical models and software-algorithmic tools can 

assist physicians and researchers in predicting the effectiveness of chemotherapy for individual cancer 
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patients. This can aid in selecting an optimal treatment regimen and improving treatment outcomes. 

Moreover, the analysis of the tumor's fractal characteristics and its changes under the influence of 

chemotherapy may reveal new patterns and features that will contribute to the further development of 

therapeutic strategies. Thus, this work can help enhance the efficacy of chemotherapy and improve the 

quality of life for cancer patients. 

Review of Modern Information Sources on the Subject of the Paper 

Chemotherapeutic drugs are cycle-specific, meaning they destroy cells at specific phases of their 

cycles. Some drugs act during the gap period (G1 phase) and the synthetic period (replication phase, S). 

Other drugs act during mitosis (M phase) or the second gap period (G2 phase). In the paper [10] studied 

mathematical linear and nonlinear models of cycle-specific chemotherapy, where he examined the 

advantages of shorter dosing periods. A mathematical model with constraint equations, describing the 

effect of drugs on sensitive normal tissue, based on impulse and piecewise-continuous chemotherapeutic 

effects, was explored in paper [13]. They determined the optimal period required for maximum tumor 

reduction. 

Panetta developed a mathematical model that accounts for treatment-sensitive cells (proliferating 

cells) and quiescent cells (G0 phase), which are resistant to treatment. Model parameters were evaluated 

for breast cancer, ovarian cancer, and bone marrow. Liu [12] and others studied the effect of an M-phase-

specific drug on cancer progression, incorporating the G0 quiescent phase and the immune response. In 

their model, the authors included a time delay for transitioning through interphase and assumed that 

immune cells interact with all cancer cells. The authors found that the dynamics of the G0 phase dictate the 

overall cancer dynamics. 

In papers [11, 13] investigated a cell-cycle-specific chemotherapy model by reformulating the 

model's differential equations as time-dependent Schrödinger equations. The effect of chemotherapy on 

cyclic tumor cells was treated as an exponentially decaying function, and the potential function was 

modelled as a Morse-type potential. Through numerical modelling [14] developed a model of interactions 

between tumor cells, immune system cells, and drug response systems. 

In the paper [15] presented a set of mathematical models on cancer cell plasticity, specifically the 

process by which, due to genetic and epigenetic changes, cancer cells survive in hostile environments and 

migrate to more favourable ones, contributing to tumor growth and invasion. In paper  [16] developed a 

mathematical model to investigate the effects of toxic drugs on tumor growth to achieve more effective 

chemotherapy. In paper [17] formulated a mathematical model to describe radiovirotherapy, a combination 

of virotherapy with radiation, used to eliminate tumors when virotherapy alone is insufficient. This model 

is based on population dynamics, encompassing the key elements of radiovirotherapy. The authors 

explored the existence of equilibrium points associated with partial/complete cure and therapy failure. 

Mathematical models described by ordinary differential equations, algebraic equations, and partial 

differential equations used to characterize tumor burden dynamics have been presented by the paper [18] . 

The authors also discussed stochastic and deterministic models of tumor resistance evolution and 

highlighted the possibility of developing a new model that includes both tumor dynamics and the evolution 

of resistance.  

Other researchers, such as Wang and Schattler [19], considered cancer chemotherapy as an optimal 

control problem. They created a mathematical model to find optimal conditions under which the tumor size 

and side effects of chemotherapy can be minimized over a certain treatment period. 

Additionally, a mathematical model was developed to study the impact of immunotherapy, 

chemotherapy, and their combinations, as well as vaccine therapy on the immune response against cancer. 

This model, proposed by the paper [20], allows for the analysis of vaccine therapy effectiveness depending 

on tumor size, immune system status, and the body's response to vaccination. The effect of vaccine therapy 

was considered as a perturbing parameter in the model. 
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Objectives and Problems of Research 

Since most biological systems possess memory or after-effects—such as the delay associated with the 

incubation period when carriers become infectious—modeling biological systems using fractional 

differential equations is more advantageous than classical modeling, which neglects memory effects. 

Recently, various fractional-order operators (Riemann-Liouville, Caputo, Caputo-Fabrizio, Atangana-

Baleanu, etc.) have been used in the mathematical modeling of processes that have "memory" and 

multilayered time scales, which is characteristic of tumors and their interaction with chemotherapy. For 

accurate modeling using fractional differential equations, it is necessary to define the order of the fractional 

derivative, which can vary depending on various factors (type of tumor, state of the microenvironment, 

individual responses to therapy). Choosing this parameter is a complex task and requires additional 

experimental data. This work is also dedicated to the software implementation of algorithms using fractal 

operators. 

Main Material Presentation 

Formulation of the Fractal Mathematical Model  

The mathematical framework of fractional differentiation includes fractional derivatives, which 

generalise ordinary derivatives to non-integer orders. Fractional derivatives are initially divided into two 

main types. Those with a singular kernel include the Riemann-Liouville (RL) and Caputo derivatives [6]. 

One of the most widely used types of fractional derivatives is the Caputo derivative [6]. It reflects the 

contribution of previous values of the function and its derivative in the computation of the fractional 

derivative. The Caputo kernel ),( tк  is employed in the formula for calculating the Caputo derivative: 
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where Γ(·) indicates the gamma function, and δ(·) represents the Dirac delta function. 

The derivative of )(tN  with respect to the Liouville-Caputo operator of order r  is defined by the 

formula: 
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In this work, we use the mathematical model [2], which considers three populations: tumor cells T(t), 

effector cells of the immune system E(t), stem cells S(t) and the concentration of the chemotherapeutic 

drug M(t).  

We express the mathematical model [2] using the Liouville-Caputo fractional derivative: 
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with initial conditions:  
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where )(tM  is the concentration of the chemotherapeutic drug, )(tE is the concentration of effector 

cells, )(tT - is the concentration of tumor cells, )(tS  is the concentration of stem cells, 1  is the decay rate 

of stem cell concentration, sk  is the fraction of stem cells killed by chemotherapy,   is the rate of effector 

cell production,   is the natural death rate of effector cells, b  is the carrying capacity related to dead 

cells, 1p  is the maximum proliferation rate of effector cells, r  is the growth rate of tumor cells, 2p  is the 

rate at which effector cells and chemotherapy kill tumor cells, tk  is the fraction of tumor cells killed by 

chemotherapy, 3p  is the decay rate of tumor cells killed by effector cells, 2  is the decay rate of the 

chemotherapeutic drug, and )(tV  represents the time-dependent external influx of the chemotherapeutic 

drug. Other characteristics and their interrelations are provided in [7]. 

In model (5), the first equation reflects the interaction between stem cells and the chemotherapeutic 

drug, acknowledging the ability of stem cells to transform into specific cells cultivated from them. They 

lose concentration over time at a rate 1 . Additionally, chemotherapy negatively affects the concentration 

of stem cells at a rate sk . In the second equation, effector cells have a constant production rate 

21  += ; where 1  s the natural production rate of effector cells and 2  is the rate of effector cell 

production from the transformation of stem cells. The second term represents the mortality rate, which is 

proportional to the effector cell population. In the third equation, the first term is the growth rate of tumor 

cells, while the second term represents the decay of tumor cells due to interaction with effector cells and 

the chemotherapeutic drug at rates 3p , and Tk  respectively. The fourth equation describes the rate of 

change of the concentration of the chemotherapeutic drug. 

Finite Difference Approximations of Fractal Operators 

Since the given mathematical model is nonlinear, obtaining an exact solution may be difficult. 

Therefore, we will use finite difference approximations of the fractal operators of model (5) based on the 

Atangana-Toufik scheme [8]. Additionally, the fundamental theorem of fractional calculus [9] can be 
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Let us define the following expressions: 
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Thus, the general numerical algorithm for implementing mathematical models with the Liouville-

Caputo fractional derivative has the form: 
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Discretization of the Fractal Model 

To discretize the fractal model (5), we use the numerical scheme (9) [8]. We obtain the numerical 

solution of the equations of model (5) as follows: 
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Software implementation 

Using the procedure described above, a software implementation of the discrete model with 

Liouville-Caputo fractional derivatives (10-13) has been carried out. The main idea of the algorithm is the 

iterative calculation of the values  )(tT , )(tE , )(tS , and )(tM  at specified time intervals. The execution 

of the algorithm involves the following steps: 
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1. Initialization of parameter values: : y1, y2,  ,  , p1, p2, p3, r, b, sk , tk , V(t). 

2. Initialization of the Treatment Period and Partitioning the Interval: Divide the treatment period 

into finite segments with a certain step size. 

3. Determination of Initial Conditions: Set the initial conditions of the system of nonlinear equations 

4. Iterative Computation: Iteratively calculate the values of T(t), E(t), S(t) and M(t) at each step of 

the interval. 

For the implementation of the algorithm, the corresponding coefficients of model (5) are used: 

S0 = 1, E0 = 1, T0 = 1, 1  = -0.02825,   - 0.17, μ = 0.03, b = 10-9, sk  = 1, p1 = 0.1245, r = 0.18, p2 = 1, 

tk  = 0.9, p3 = 0.9, 2  = 6.4, V(t)  = 1. 

Figure 1 presents the UML diagram of the software application. Let's describe each of the classes. 

BaseAlgorithm: This is the base class that represents the general algorithm for computing the 

mathematical model. When this class is created, the parameter values and the initial conditions of the 

system are initialized. The equations of the mathematical model are also presented in this class as methods. 

GUI: This class is responsible for interaction with the user interface. It receives as input the initial 

values T(0), E(0), S(0) , and M(0), as well as a number of parameters such as y1, y2,  ,  , p1, p2, p3, r, b, 

sk , tk , V(t). Upon clicking the "Run Simulation" button, it initiates the computation of the selected 

algorithms of the corresponding classes. This class is also responsible for displaying the results in a 

graphical representation. 

RiemannLiouvilleAlgorithm: This class, like the previous one, solves the fractional-order Liouville-

Caputo problem based on the Atangana-Toufik method. 

RungeKuttaAlgorithm: This class is responsible for computing the integer-order results of the 

mathematical model using the Runge-Kutta method. This algorithm is applied in the software 

implementation of the mathematical model to compare the integer-order and fractional-order results. 

 
Fig. 1.  UML diagram of the software application 
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Results and Discussion 

The obtained graphical results are presented in Figures 2 to 3, using  = 1, 0.98, 0.96, 0.92. Figure 4 

shows the dependencies of the concentrations of tumor cells T(t) (yellow line), effector immune cells E(t) 

(red line), stem cells S(t) (blue line), and the chemotherapeutic drug M(t) (purple line). 

 
Fig. 2.  Variation of the function S(t) for different values of the fractional parameter a 

 
Fig. 3. Variation of the function E(t) for different values of the fractional parameter a 

 
Fig. 4.  Variation of the function T(t) for different values of the fractional parameter a 
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Fig. 5. Variation of the function M(t) for different values of the fractional parameter a 

From these figures, it can be seen that fractional models can produce cases where the studied 

functions decrease even in the interval where the drug is inactive (t > t0 ). Such behavior is not observed in 

the ordinary case, which corresponds to 1= . In the case of the fractional model, one can select a 

convenient value of the fractional parameter so that at the end of the active period or at the end of the total 

treatment period, the desired function attains a given value. Such a choice can suggest certain forms of 

treatment. 

Analysis of the obtained data indicates that the concentration of cancer cells decreases over time and 

approaches zero at a death rate of p3 = 0.9 and given initial conditions. The growth rate of tumor cells is 

less than the rate of interaction between tumor cells and effector cells, which are supported by stem cells 

and the concentration of the chemotherapeutic drug; therefore, the immune system is modified. Thus, the 

combination of stem cell therapy and chemotherapy allows us to hope for recovery from cancer and 

improvement in the quality of life. 

Conclusions 

In this work, mathematical models have been synthesized using fractal analysis methods, and 

software algorithms have been developed to assess the impact of chemotherapy on the state of a cancerous 

tumor, taking into account the effect of long-term memory. The considered mathematical model of the 

influence of chemotherapy on the tumor state has been investigated based on the Liouville-Caputo 

derivatives. To implement the fractal model of chemotherapy influence, the Atangana-Toufik numerical 

scheme was used. Finite difference approximations of the fractal operators of the mathematical models 

have been constructed. Additionally, one of the main stages of the work was the software implementation 

of the model, development of the interface, and visualization of the results. The numerical results obtained 

using the software are presented in the form of graphical illustrations. The use of the fractional model 

shows that the time evolution of the concentrations of tumor cells, effector cells of the immune system, and 

stem cells is significantly influenced by their history. The presence of a fractional-order time derivative as 

a parameter in the solutions provides important information for predicting the impact of chemotherapy on 

the state of the cancerous tumor. Furthermore, considering the fractal structure of the tumor and its changes 

under the influence of chemotherapy allows for the discovery of new patterns and features. 
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Анотація. Стаття присвячена побудові різницевих апроксимацій фрактальних операторів 

математичної моделі впливу хіміотерапії на стан ракової пухлини на підставі апарату дробового 

диференціювання з використанням похідної Капуто. Представлено математичну модель стовбурових 

клітин і хіміотерапії. Побудовано числові алгоритми для реалізації математичних моделей дробового 

порядку з використанням методу Атангана-Туфіка. Описано UML-діаграму програмного застосунку та 

процес його розробки.Проведено аналіз впливу фрактальних характеристик (довготривалої пам’яті) 

хіміотерапії на стан ракової пухлини . Наявність дробового порядку похідної за часом як параметра 

розв’язків дає важливу інформацію про прогнозування впливу хіміотерапії на стан ракової пухлини  

Ключові слова: модель дробового порядку, дробові оператори, метод Атангана–Туфіка, ракова 

пухлина, python, мова R. 
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