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Abstract. The article is dedicated to constructing difference approximations of fractal
operators in a mathematical model of the impact of chemotherapy on the state of a cancerous tumor,
based on fractional calculus using the Caputo derivative. A mathematical model of stem cells and
chemotherapy is presented. Numerical algorithms for implementing fractional-order mathematical
models have been developed using the Atangana-Toufik method. The UML diagram of the software
application and its development process are described. The impact of fractal characteristics (long-
term memory) of chemotherapy on the state of a cancerous tumor is analysed. The presence of a
fractional-order time derivative as a parameter of the solutions provides important information for
predicting the effects of chemotherapy on the tumor's state.

Keywords: fractional order model, fractional operators, atangana-toufik method, cancer
tumor python, R language.

Introduction

The investigation of interactions between immune cells and tumor cells seeks to elucidate how the
immune system engages with cancer cells to develop more effective treatments for oncological diseases.
The study of these interactions necessitates the use of diverse methodologies to examine the complexity of
these relationships [1,2]. A significant challenge arises when cancer cells attempt to divide and proliferate,
sustaining themselves by forming new blood vessels, a process known as angiogenesis. In doing so, the
tumor compromises surrounding healthy tissues and may disseminate throughout the body via a process
referred to as metastasis.

Mathematical modelling plays a pivotal role in forecasting tumor progression and evaluating the
efficacy of therapeutic interventions based on available data concerning the behaviour of immune and
cancer cells. The modelling of the metastatic process represents a sophisticated scientific approach,
enabling the exploration of the mechanisms by which cancer cells spread from the primary tumor to other
organs and tissues. This is a critical phase in cancer research, as metastasis constitutes the principal cause
of cancer-related mortality. To model metastasis, various experimental, computational, and mathematical
techniques are employed, alongside both in vitro and in vivo models.

Mathematical models are utilised to describe and predict the spread of metastases. These models
often involve differential equations that characterise the growth rate of the primary tumor, cellular
invasion, migration, colonisation, and the expansion of metastatic sites. The development of such models is
also integral to the creation of computer simulation systems, which enable the construction of virtual tumor
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models. These models are instrumental in assessing the potential efficacy of therapeutic interventions and
in studying the interactions between tumor cells and the tumor microenvironment.

Thus, metastasis modelling is a multifaceted approach that combines cell-level experiments,
innovative mathematical models, and computer simulations. This comprehensive strategy not only
enhances the understanding of the mechanisms driving cancer dissemination but also facilitates the
development of therapeutic strategies aimed at preventing the progression of metastasis.

Fractal models are crucial for simulating complex processes such as metastasis, due to their ability to
describe the dynamics of systems with memory and multi-scale time layers, which are characteristic of
biological systems, particularly in tumor growth and metastasis spread.

Fractional calculus plays a significant role in modelling the process of metastasis, as it allows for the
consideration of the intricate dynamics of biological processes, such as the dissemination of tumor cells
and their interaction with the organism. One of the key advantages of fractional derivatives is their ability
to model processes with "memory," accounting for all previous states of the system. This is particularly
important for complex phenomena like metastasis [3]. Conventional mathematical models often fail to
capture all influences that accumulate over time, whereas fractional calculus can provide more accurate
predictions regarding tumor progression and response to treatment.

The use of fractional derivatives enables the modelling of anomalous diffusion processes in tumor
cells within tissues, accounting for variations in their movement when the cells do not follow classical
Brownian diffusion laws. This is characteristic of the spread of cancer cells through blood or lymphatic
vessels [4]. Moreover, fractional models can incorporate information on pharmacokinetics and
pharmacodynamics, allowing for the prediction of the efficacy of various treatment methods, such as
chemotherapy or immunotherapy, and facilitating personalised approaches in medicine.

Research in this field encompasses the application of fractional calculus to model the evolution of
cancer cells and to predict treatment efficacy [5]. This article presents an overview of the application of
fractional calculus in cancer research, particularly in the modelling of tumor growth and metastasis spread.
Mathematical models that account for the complex dynamics of tumor processes and their interactions with
the microenvironment are considered. For instance, the development of models to study metastases in bone
tissues using fractional derivatives allows for a more precise assessment of therapy's impact on various
types of cancer. This approach enables the tailoring of individual treatment protocols for each patient,
considering the specific progression of their disease. Thus, the development of fractal mathematical models
that can aid in predicting chemotherapy efficacy and optimising treatment regimens is of great importance.

Problem Statement

The object of the study is the process of chemotherapy's impact on the state of a cancerous tumor.
The subject of the study is the mathematical and software tools for modelling the effect of chemotherapy
on the state of a cancerous tumor using fractal methods.

Aim of the work: The construction of a mathematical model using fractal analysis methods and the
development of software-algorithmic support to assess the impact of chemotherapy on the state of a
cancerous tumor. Objective: To build a mathematical model using fractal analysis methods and to develop
software and algorithmic support for the effect of chemotherapy on the state of a cancerous tumor.

The achievement of the objective includes the following tasks. Analysis of fractal mathematical
models of the effect of chemotherapy on the state of a cancerous tumor, taking into account long-term
memory. Analysis of the mathematical model of the effect of chemotherapy on the state of a breast cancer
tumor, taking into account the effect of long-term memory. Construction of difference approximations of
fractal operators of the model. Development of algorithmic software. Software implementation of the
model.

Validation of the mathematical model. Analysis of the influence of the fractal characteristic (long-
term memory) of chemotherapy on the state of a cancerous tumor.

Practical significance. The synthesised mathematical models and software-algorithmic tools can
assist physicians and researchers in predicting the effectiveness of chemotherapy for individual cancer
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patients. This can aid in selecting an optimal treatment regimen and improving treatment outcomes.
Moreover, the analysis of the tumor's fractal characteristics and its changes under the influence of
chemotherapy may reveal new patterns and features that will contribute to the further development of
therapeutic strategies. Thus, this work can help enhance the efficacy of chemotherapy and improve the
quality of life for cancer patients.

Review of Modern Information Sources on the Subject of the Paper

Chemotherapeutic drugs are cycle-specific, meaning they destroy cells at specific phases of their
cycles. Some drugs act during the gap period (G1 phase) and the synthetic period (replication phase, S).
Other drugs act during mitosis (M phase) or the second gap period (G2 phase). In the paper [10] studied
mathematical linear and nonlinear models of cycle-specific chemotherapy, where he examined the
advantages of shorter dosing periods. A mathematical model with constraint equations, describing the
effect of drugs on sensitive normal tissue, based on impulse and piecewise-continuous chemotherapeutic
effects, was explored in paper [13]. They determined the optimal period required for maximum tumor
reduction.

Panetta developed a mathematical model that accounts for treatment-sensitive cells (proliferating
cells) and quiescent cells (GO phase), which are resistant to treatment. Model parameters were evaluated
for breast cancer, ovarian cancer, and bone marrow. Liu [12] and others studied the effect of an M-phase-
specific drug on cancer progression, incorporating the GO quiescent phase and the immune response. In
their model, the authors included a time delay for transitioning through interphase and assumed that
immune cells interact with all cancer cells. The authors found that the dynamics of the GO phase dictate the
overall cancer dynamics.

In papers [11, 13] investigated a cell-cycle-specific chemotherapy model by reformulating the
model's differential equations as time-dependent Schrodinger equations. The effect of chemotherapy on
cyclic tumor cells was treated as an exponentially decaying function, and the potential function was
modelled as a Morse-type potential. Through numerical modelling [14] developed a model of interactions
between tumor cells, immune system cells, and drug response systems.

In the paper [15] presented a set of mathematical models on cancer cell plasticity, specifically the
process by which, due to genetic and epigenetic changes, cancer cells survive in hostile environments and
migrate to more favourable ones, contributing to tumor growth and invasion. In paper [16] developed a
mathematical model to investigate the effects of toxic drugs on tumor growth to achieve more effective
chemotherapy. In paper [17] formulated a mathematical model to describe radiovirotherapy, a combination
of virotherapy with radiation, used to eliminate tumors when virotherapy alone is insufficient. This model
is based on population dynamics, encompassing the key elements of radiovirotherapy. The authors
explored the existence of equilibrium points associated with partial/complete cure and therapy failure.

Mathematical models described by ordinary differential equations, algebraic equations, and partial
differential equations used to characterize tumor burden dynamics have been presented by the paper [18] .
The authors also discussed stochastic and deterministic models of tumor resistance evolution and
highlighted the possibility of developing a new model that includes both tumor dynamics and the evolution
of resistance.

Other researchers, such as Wang and Schattler [19], considered cancer chemotherapy as an optimal
control problem. They created a mathematical model to find optimal conditions under which the tumor size
and side effects of chemotherapy can be minimized over a certain treatment period.

Additionally, a mathematical model was developed to study the impact of immunotherapy,
chemotherapy, and their combinations, as well as vaccine therapy on the immune response against cancer.
This model, proposed by the paper [20], allows for the analysis of vaccine therapy effectiveness depending
on tumor size, immune system status, and the body's response to vaccination. The effect of vaccine therapy
was considered as a perturbing parameter in the model.
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Objectives and Problems of Research

Since most biological systems possess memory or after-effects—such as the delay associated with the
incubation period when carriers become infectious—modeling biological systems using fractional
differential equations is more advantageous than classical modeling, which neglects memory effects.
Recently, various fractional-order operators (Riemann-Liouville, Caputo, Caputo-Fabrizio, Atangana-
Baleanu, etc.) have been used in the mathematical modeling of processes that have "memory” and
multilayered time scales, which is characteristic of tumors and their interaction with chemotherapy. For
accurate modeling using fractional differential equations, it is necessary to define the order of the fractional
derivative, which can vary depending on various factors (type of tumor, state of the microenvironment,
individual responses to therapy). Choosing this parameter is a complex task and requires additional
experimental data. This work is also dedicated to the software implementation of algorithms using fractal
operators.

Main Material Presentation

Formulation of the Fractal Mathematical Model

The mathematical framework of fractional differentiation includes fractional derivatives, which
generalise ordinary derivatives to non-integer orders. Fractional derivatives are initially divided into two
main types. Those with a singular kernel include the Riemann-Liouville (RL) and Caputo derivatives [6].
One of the most widely used types of fractional derivatives is the Caputo derivative [6]. It reflects the
contribution of previous values of the function and its derivative in the computation of the fractional
derivative. The Caputo kernel x(t,«) is employed in the formula for calculating the Caputo derivative:

(D Jt) =kt @) *yr (1) = [x(t - 7, @)y (2)dr, &)

where y(zr) - the ordinary derivative of a function w(t) and for T > 0 is differentiable by v :
[0,T]—>C.

The Caputo kernel is defined as follows:

K(t,a):{t”‘ ITAl-a)0<a<1
ot),a=1

where I'(+) indicates the gamma function, and 6(-) represents the Dirac delta function.

The derivative of N(t) with respect to the Liouville-Caputo operator of order r is defined by the
formula:

, (2)

°DIN(t) = o )j(t 5 INT(8)ds,t> 0, 3)

where g—1<r<qg,qeN .
For N:R"™ — R and r € (0,1) the Riemann-Liouville fractional integral is defined as:

RIN(@) =——| (t-8)""'N(5)ds,t>0,
N(t) r()j( )N (&) (4)
In this work, we use the mathematical model [2], which considers three populations: tumor cells T(t),
effector cells of the immune system E(t), stem cells S(t) and the concentration of the chemotherapeutic
drug M(t).
We express the mathematical model [2] using the Liouville-Caputo fractional derivative:
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oDIS(t) =S (1) =k M (1)S(1)

c p.E(t)S(t)
CDIE(t) =a— uE(t) + S0+ pz(T(t)+M(t))E(t) -
SDIT (1) =r(L—bTM)T (1) - (p,E() +k; M ()T (t)

SDIM(t) ==y, M (t) +V (t)

with initial conditions:

S, (t) = $(0), Eg (t) = E(0), Ty (t) =T (0), M, (t) = M (0),

where M (t) is the concentration of the chemotherapeutic drug, E(t)is the concentration of effector
cells, T (t) - is the concentration of tumor cells, S(t) is the concentration of stem cells, y, is the decay rate
of stem cell concentration, K, is the fraction of stem cells killed by chemotherapy, « is the rate of effector
cell production, u is the natural death rate of effector cells, b is the carrying capacity related to dead
cells, p, is the maximum proliferation rate of effector cells, r is the growth rate of tumor cells, p, is the
rate at which effector cells and chemotherapy kill tumor cells, Kk, is the fraction of tumor cells killed by
chemotherapy, p, is the decay rate of tumor cells killed by effector cells, y, is the decay rate of the

chemotherapeutic drug, and V (t) represents the time-dependent external influx of the chemotherapeutic

drug. Other characteristics and their interrelations are provided in [7].
In model (5), the first equation reflects the interaction between stem cells and the chemotherapeutic
drug, acknowledging the ability of stem cells to transform into specific cells cultivated from them. They

lose concentration over time at a rate y,. Additionally, chemotherapy negatively affects the concentration
of stem cells at a rate k,. In the second equation, effector cells have a constant production rate

o =o, +a,, where ¢, s the natural production rate of effector cells and «, is the rate of effector cell

production from the transformation of stem cells. The second term represents the mortality rate, which is
proportional to the effector cell population. In the third equation, the first term is the growth rate of tumor
cells, while the second term represents the decay of tumor cells due to interaction with effector cells and
the chemotherapeutic drug at rates p,, and k; respectively. The fourth equation describes the rate of
change of the concentration of the chemotherapeutic drug.

Finite Difference Approximations of Fractal Operators

Since the given mathematical model is nonlinear, obtaining an exact solution may be difficult.
Therefore, we will use finite difference approximations of the fractal operators of model (5) based on the
Atangana-Toufik scheme [8]. Additionally, the fundamental theorem of fractional calculus [9] can be

applied at a given point t =t ,, j=0.2,..., and a two-step Lagrange polynomial interpolation [4,5] can
be utilized within the interval [t ,t...]. Then, the function f(&,y(8)) can be approximated within the

interval [t ,t,.,]

1 j f(t 19 ) [ima -
0= Gt —— [%J (t—ty )ty D)t

I'(a) )
f(ty s 9ny) na a-1 ,
- [P )t — )t
Let us define the following expressions:
ha+1(j+l m)*(j—-m+2+a)—(j—m)*(j—m+2+2a) @

a(a+1)
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_pea UHL=m - (j-m)(j-m+1lta) ©
a(a+1)
Thus, the general numerical algorithm for implementing mathematical models with the Liouville-
Caputo fractional derivative has the form:

1 &(h*f(t,0.)¢,. . .
i1 =9(00)+ LER2(j+1-m)*(j—-m+2+a)—(j—m)*
9,.=9(0) r(a);)( P ((G+1-m)“(j @) - (j—m)® x
h*f(t, 1, 9m)
a(a+1)
Discretization of the Fractal Model

To discretize the fractal model (5), we use the numerical scheme (9) [8]. We obtain the numerical
solution of the equations of model (5) as follows:

A,

, )

x(j—m+2+2a))- ((j+1—m)“+1—(j—m)“(j—m+1+a))j

S, =5, +izj [haf(tm’ mr Ems T M )((J+1 m*(j—-m+2+a)—

I'(a) a(a+1) S

—(j—m)*(j—m+2+2a))- " fy (. ”;E’OKEI;)'Tm‘l’Mm‘l)((j+1—m)"—(j—m)“(j—m+1+a))]

~ 1 i (Wt S En T Ma)( 3 B
Ej+1 - EO + F(a) Zm_o( (Z(a+1) (J +1- m) (J m+2+a) (11)
—(j-m)*(j—m+2+2a))- N T (s, ZEaEIf)T""'l ml)((J+1 m)* —(j - m)a(J—m+1+a))J

o1 (N, S En T M) )
Tiu=To+ (a)z [ wesD) ((j+1-m)*(j—m+2+a) W
—(j—m)“(j—m+2+2a))- h™ f3 (.o, a(aE:f)Tml m-l)((j+1—m)“—(j—m)a(j—m+1+a))J

~ 1 i ("t Sm Eni T M) B
Mj+1 - MO +1—-(a) Zm: ( a(O(-f-l) (J+1 m) (J m+2+a) | (13)

ha f4 (tm—l’ m-1? Em—l'Tm—l' M
a(a+1)

—(j-m)*(j—m+2+2a))- m‘l)((j+1—m)“—(j—m)”‘(j—m+1+a))}

where
f,(t,S(t), EQX), T (), M (1)) =7,S({t)—ksM (t)S(t)

% p,TO+MBED

f5 (6, S(),E®).T(®).M (1)) = r(-bT )T (t) - (p,E(t) + k; M ()T (¥)

f,(t, S),E(1), T(),M () =—,M{O)-V ()

Software implementation

Using the procedure described above, a software implementation of the discrete model with
Liouville-Caputo fractional derivatives (10-13) has been carried out. The main idea of the algorithm is the
iterative calculation of the values T (t), E(t), S(t), and M (t) at specified time intervals. The execution

of the algorithm involves the following steps:

f,(t,S(t),E(t), T(),M(t)) =a—E(t)+
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1. Initialization of parameter values: : y1,y2, &, u, p1, P2, ps, I, b, K, , K, V().

2. Initialization of the Treatment Period and Partitioning the Interval: Divide the treatment period
into finite segments with a certain step size.

3. Determination of Initial Conditions: Set the initial conditions of the system of nonlinear equations

4. Iterative Computation: Iteratively calculate the values of T(t), E(t), S(t) and M(t) at each step of
the interval.

For the implementation of the algorithm, the corresponding coefficients of model (5) are used:

So=1,E=1To=1, y, =-0.02825, & -0.17, u=10.03,b=10-9, k, =1, p1 =0.1245,r =0.18, p2 = 1,
k., =0.9,ps=09, y, =6.4, V() =1.
Figure 1 presents the UML diagram of the software application. Let's describe each of the classes.
BaseAlgorithm: This is the base class that represents the general algorithm for computing the
mathematical model. When this class is created, the parameter values and the initial conditions of the
system are initialized. The equations of the mathematical model are also presented in this class as methods.
GUI: This class is responsible for interaction with the user interface. It receives as input the initial
values T(0), E(0), S(0) , and M(0), as well as a number of parameters such asy1,y2, a, u, p1, p2, ps, I, b,

ki, k., V(). Upon clicking the “Run Simulation" button, it initiates the computation of the selected

algorithms of the corresponding classes. This class is also responsible for displaying the results in a
graphical representation.

RiemannLiouvilleAlgorithm: This class, like the previous one, solves the fractional-order Liouville-
Caputo problem based on the Atangana-Toufik method.

RungeKuttaAlgorithm: This class is responsible for computing the integer-order results of the
mathematical model using the Runge-Kutta method. This algorithm is applied in the software
implementation of the mathematical model to compare the integer-order and fractional-order results.

GUI

parameters : Array

hints : Array
S
algorithms: Array

User + create_widgets()

+ display_plot()

l

+fi(s, e, w, m)

Mathematical +12(s, e, w, m) RungeKuttaAlgorithm

model

+13(s, e, w, m) + compute_next(x, f, n)
+f4(s, e, w, m)

ABCAIgorithm | RiemannLiouvilleAlgorithm
+ abc : Double + abc : Double
+ compute_next(x, f, n, k) + compute_next(x, f, n, k)
CaputoFabrizioAlgorithm

+ compute_nexi(x, f, n)

Classes with fractional derivative

Fig. 1. UML diagram of the software application
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Results and Discussion

The obtained graphical results are presented in Figures 2 to 3, using & =1, 0.98, 0.96, 0.92. Figure 4
shows the dependencies of the concentrations of tumor cells T(t) (yellow line), effector immune cells E(t)
(red line), stem cells S(t) (blue line), and the chemotherapeutic drug M(t) (purple line).

Concentration of cells S(t)

1000 A

—— ABC, a=1

0.975 - ABC, a=0.98

—— ABC, a=0.96

0.950 + —— ABC, a=0.92
0.925 -
7 0.900 -
0.875 -
0.850 -
0.825 -

09 10 11 12 13 14 15 16 17

Time (day), t

Fig. 2. Variation of the function S(t) for different values of the fractional parameter a
Concentration of cells E(t)

10 -
09 -
08

= 07 4

w
0.6 1 —— ABC, a=1
- ABC, a=0.98

—— ABC, a=0.96
il —— ABC, a=0.92
2 4 6 8 10 12 14

Time (day), t
Fig. 3. Variation of the function E(t) for different values of the fractional parameter a
Concentration of cells T(t)

0.7
—— ABC, a=1
0.6 - ABC, a=0.98
—— ABC, a=0.96
05 1 —— ABC, a=0.92
04 -
E 03 -
02 -
01 -
0.0 -
2 H 6 8 10 2 14
Time (day), t

Fig. 4. Variation of the function T(t) for different values of the fractional parameter a

179



Olesia-Oksana Vilchynska, Yaroslav Sokolovskyi, Andrii Mokrytskyi

Chemotherapeutic drug concentration M(t)

050 —— ABC, a=1
ABC, a=0.98
0.45 1 ABC, a=0.96
040 1 —— ABC, a=0.92
— 035
=
030 1
025 1
020 1
015‘ T T T T T T
10 15 20 25 30 35

Time (day), t
Fig. 5. Variation of the function M(t) for different values of the fractional parameter a

From these figures, it can be seen that fractional models can produce cases where the studied
functions decrease even in the interval where the drug is inactive (t > to ). Such behavior is not observed in
the ordinary case, which corresponds to a =1. In the case of the fractional model, one can select a
convenient value of the fractional parameter so that at the end of the active period or at the end of the total
treatment period, the desired function attains a given value. Such a choice can suggest certain forms of
treatment.

Analysis of the obtained data indicates that the concentration of cancer cells decreases over time and
approaches zero at a death rate of p3 = 0.9 and given initial conditions. The growth rate of tumor cells is
less than the rate of interaction between tumor cells and effector cells, which are supported by stem cells
and the concentration of the chemotherapeutic drug; therefore, the immune system is modified. Thus, the
combination of stem cell therapy and chemotherapy allows us to hope for recovery from cancer and
improvement in the quality of life.

Conclusions

In this work, mathematical models have been synthesized using fractal analysis methods, and
software algorithms have been developed to assess the impact of chemotherapy on the state of a cancerous
tumor, taking into account the effect of long-term memory. The considered mathematical model of the
influence of chemotherapy on the tumor state has been investigated based on the Liouville-Caputo
derivatives. To implement the fractal model of chemotherapy influence, the Atangana-Toufik numerical
scheme was used. Finite difference approximations of the fractal operators of the mathematical models
have been constructed. Additionally, one of the main stages of the work was the software implementation
of the model, development of the interface, and visualization of the results. The numerical results obtained
using the software are presented in the form of graphical illustrations. The use of the fractional model
shows that the time evolution of the concentrations of tumor cells, effector cells of the immune system, and
stem cells is significantly influenced by their history. The presence of a fractional-order time derivative as
a parameter in the solutions provides important information for predicting the impact of chemotherapy on
the state of the cancerous tumor. Furthermore, considering the fractal structure of the tumor and its changes
under the influence of chemotherapy allows for the discovery of new patterns and features.
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Anoranig. CraTrTs mpucBsUeHa IOOYIOBI PpI3HHUIIEBUX allpoOKCHMaliil (paKTalbHUX OIEepaTopiB
MaTeMaTHYHOI MOJENI BIUTMBY XiMioTepamii Ha CTaH PaKOBOI MyXJMHM Ha IiJICTaBl amapary IpoOOBOro
mrdepeHIifoBaHHs 3 BUKOpUCTaHHIM moxinHoi Kamyto. [IpencraBneHo MaTeMaTnyHy MOJENb CTOBOYPOBHX
KJIiTHH 1 XimioTeparnii. [ToOyzoBaHO YMCIIOBI aNrOpUTMH IS peajii3alii MaTeMaTHYHUX Mojeel ApoOoBOro
HOPSIIKY 3 BUKOPUCTaHHSIM MeTony Atanrana-Tydika. Onucano UML-niarpamy nporpaMHOTO 3aCTOCYHKY Ta
npouec Horo po3poOku.lIpoBeneHo aHaiz BIUIMBY (paKTalbHUX XapaKTEPUCTUK (IOBrOTPHBAJIOI I1aM’sTi)
ximioTepanii Ha CTaH PaKoBOi MyXJIMHU . HasBHICTH APOOOBOro MOPSAKY MOXiJMHOI 32 4acoM SIK MapaMerpa
PO3B’S3KIB Ja€ BaXJIMBY iH(OPMAIiIO PO MIPOTHO3yBaHHsI BIUIMBY XiMioTeparii Ha CTaH paKoBOi MyXJIMHH

KurouoBi ciioBa: Mozens JpoOoBOro mopsiaky, ApoOoBi onepatopu, Mmetoa AtanraHa—Tydika, pakoBa
nyxJuHa, python, mosa R.
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