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The field of time series forecasting has grown significantly over the past several years and
is now highly active. In numerous application domains, deep neural networks are exact
and powerful. They are among the most popular machine learning techniques for resolving
big data issues because of these factors. Historically, there have been numerous methods
for accurately predicting the subsequent change in time series data. The time series
forecasting problem and its mathematical underpinnings are first articulated in this study.
Following that, a description of the most popular deep learning architectures used to date
with success in time series forecasting is provided, emphasizing both their benefits and
drawbacks. Feedforward networks, recurrent neural networks (such as Elman networks),
long- and short-term memory (LSTM), and gated recurrent units (GRU) are given special
consideration. Furthermore, the advantages of the XGBoost boosting tree method have
shown its superiority in numerous data mining competitions in recent years. The high
coeflicients of the metric measures indicate that the proposed XGBoost model provides
good predictive performance, according to the results.

Keywords: forecasting; yield curve, deep learning; long short term memory; gated recur-
rent unit; eXtreme gradient boosting.
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1. Introduction

Time series forecasting is an important area of research that has been successfully used in several
application areas [1,2]. Time series forecasting involves making predictions behavior of a system using
data about its past and present states. Due to their high dimensionality, complex market dynamics,
and extremely high noise levels, the extraction of financial time series is difficult, which complicates
the determination of similarity. Recent developments in the field of machine and deep learning have
led to the development of several machine-learning techniques for the analysis of financial time series.
In order to circumvent the drawbacks of conventional forecasting techniques, this problem has recently
attracted the interest of machine learning researchers. We will focus on three machine learning models
in this research. To mimic financial time series, including stock prices, interest rates, and stock market
indices, long-term memory (LSTM) [3,4] has long been used. In addition, Gated Recurrent Unit
(GRU) networks [5] outperform traditional Recurrent Neural Networks (RNN) when learning long-
term dependencies, overcoming the challenges posed by gradient fading and bursting. The eXtreme
Gradient Boosting (XGBoost) method is more frequently employed than support vector networks and
random forests as machine learning approaches [6]. It offers considerable advances in terms of accuracy,
speed, and the ability to take into account data attributes. The rest of the paper is organized as
follows: we describe the mathematical modeling of time series. Then we describe the architectures of
three models. We carry out a practical study of the Moroccan Treasury bill reference rate as our time
series. In addition, the experimental results of this study. And we end with a conclusion.
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2. Yield curve

What exactly is a yield curve?

A yield curve is a graphical representation of the relationship between interest rates and the matu-
rity of debt securities. It is a valuable tool for understanding market sentiment, predicting economic
trends, and making informed investment decisions.

In practice, there are several yield curves on the markets. We can distinguish two families:

— Market curves, i.e., those constructed directly from market quotations:
e swap rate curve;
e bond yield curve for the government;
— Implied curves, which are created by extrapolating market quotations for securities like bonds and
swaps:
e zero-coupon yield curve;
forward rate curve;
forward rate curve that is immediate;
curve of yield at par.
For many financial and economic choices, yield curve forecasting is crucial. In addition to being
important for investment management, monetary policy, risk management, and economic planning, it
gives significant information on market predictions of future interest rates.

3. Time series

A time series (or chronological series) is a sequence of observations x1,xg, ..., x, indexed by time. It

will be assumed that this is a realization of a process X, i.e. a sequence {X;} of random variables.
A time series is generally made up of several elements:

— Trend: represents the long-term evolution of the series (interannual scale). Examples of economic
growth, and long-term climatological trends (cyclical or non-cyclical).

— Seasonality: changes occurring regularly every year, month, or week, every week. Examples: in me-
teorology, there are lower temperatures in the winter than in the summer. In economics, seasonality
is induced by vacation periods, climate, etc.

— Stationary (or residual) component: what remains once the other components have been removed.
Describe the short-term evolution of the series (daily scale).

Time series analysis can be further categorized as univariate or multivariate. The single observation is

the only variable in the univariate time series. Multiple observations gathered over time make up the

multivariate time series.

4. Machine learning algorithms

Algorithms are systematic operations used in various disciplines, including computer science, to teach

computers how to perform specific tasks. Machine learning algorithms are widely used in data science

due to their ability to learn independently from data, enabling them to quickly improve with practice,

unlike other algorithms that operate without input. These algorithms are a narrow class of algorithms.
Algorithms for machine learning are employed in both data analysis and prediction. There are

various machine learning algorithms, including [7]:

— supervised Learning;

— unsupervised Learning;

— reinforcement Learning.

5. Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) are powerful machine learning models for analyzing data sequences,
such as text, speech, or time series. These networks enable machines to “remember” past information
and use it to make decisions in real time.
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Y Using hidden state vectors to hold historical data in
sequential data is the basic notion behind RNNs. Figu-
re 1 displays a basic RNN unit, referred to as a vanilla
Hj H; RNN, where H;_; is identified as the hidden state vector

at time t;_;. At time t;, X;, and Yj are the inputs and
outputs, respectively. Updates to the hidden state vector
and outputs are made by

Xi Hj =gWyggHj—1+ WaxX; +b),
Fig.1. A simple RNN unit. Y, = Q(WYHH]' + by),
where ¢ is the activation function, such as the sigmoid function; Wgr, Wy g, by, and by are trainable

weights and biases to be determined by the training process using the training dataset by minimizing
the loss function.

6. Long short-term memory (LSTM)

The LSTM network is a type of recurrent neural network that is used to describe long-term dependen-
cies [8]. Long short-term Memory (LSTM) is a series of memory cells that store and update information
in significant increments. Each cell contains three gates: input, output, and forget. The input gate
adds information, the output gate outputs it, and the forget gate discards it. The network learns the
gates based on input and hidden state [4]. The gates have the following equations:

input gate:
o & I; = m(UrH;_y + U Hj);
forget gate:
b Fy =m(UrHj—1 + UrHj);
Eﬂj output gate:
F; 0j = m(UoH,_1 + Uo H;);
Hyy o UTF intermediate cell state:
h G = tanh(UgH;_, + UgH,);
[xj cell state (nest memory input):
Fig. 2. An LSTM cell diagram. Cj = ([j * Gj) + (FJ * Cj_1);

new state:
H; = O; * tanh(C});
x; is input vector; H; is output vector.

The next parameter in our LSTM model in Keras is in Table 1.

Table 1. Hyperparameters for LSTM model.

Parameter | Epochs | Batch size | Optimizer | Loss | Layer | Dense
Value 50 32 rmsprop | mse 5 1

7. Gated recurrent unit (GRU)

GRU, or Gated Recurrent Unit, is a simplified type of LSTM with two gates [5]: a reset gate and
an update gate. The reset gate keeps the previous concealed state, whereas the update gate includes
fresh input. The concealed state serves as both the cell state and output, eliminating the need for a
separate output gate. GRU is less complicated to construct and has fewer parameters than LSTM [9].
The GRU has the following equations:
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update gate:
Lj = m(WLHj_l + ULXj);

reset gate:
K; = m(WKHj_l + UKXj);
cell state:
Cj = tanh(We(Hj—1 * K) + Uc Xj);
new state:

Hj = (L * C)((l - L) *Hj—l)-

H.
Hj—l J
/\U @ @ N )
: L
K\ L rC;
| m ] [ m | | tanh |
\_ \J J
\_ p,
X;

Fig. 3. Schematic for GRU Cell.

The next parameter in our GRU model in Keras is in Table 2.

Table 2. Hyperparameters for GRU model.

Parameter | Epochs | Batch size | Learning rate | Momentum | Loss | Layer | Dense
Value 50 32 0.01 0.9 mse 5 1

8. eXtreme gradient boosting (XGBoost)

There are two primary reasons why the XGBoost algorithm was used for this study’s benchmark rate
prediction of Moroccan treasury bills. First off, for the gradient boosting machine (GBM), XGBoost is
among the most well-liked boosting tree algorithms. The industry has made extensive use of it because
of its great performance in solving problems and low-feature engineering needs. Second, XGBoost is
acknowledged as being more user-friendly for small datasets running on the CPU when compared to
deep learning algorithms.

The Classification and regression tree (CART) is a decision tree used in stimulus tree algorithms to
divide a dataset into two groups based on a variable’s limit until the maximum tree depth is reached.

It can be described as below:

Ry = {z]2! <s} and Ry = {z]2’ > s}.
Each leaf node’s mean squared error is computed:
MSEnode = Z (gnode - y(l))y

i€node
1 A1

gnode = Z v,
node

i€node
where the number of occurrences in a node is denoted by my,q.. The following is an expression for the
cost function for CART regression:

Ik ty) = 2

Mos
left MSEleft + —Mght MSEright'
m m
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The algorithm minimizes the cost function by finding the best solutions for variable bounds, resulting
in the average target value of each instance in a single subset. However, CART trees can overfit without
regularization, so ensemble bagging is used to address this issue.

XGBoost continuously adds and trains new trees to address previous iterations’ mistakes, providing
predicted values by aggregating scores from all corresponding leaves,

k
= d(xi) =Y fulwi),
k=i

fi(@i) = we(z), fr €F,
where k is the number of trees, wq(x) is the score for each leaf node, g(x) is the number of leaf nodes,
and F is an assembly of all related functions fi. The result of input x; for the k-th tree is represented
by fi(zi).
The regularization and the training error make up two components of XGBoost’s objective function,
which is expressed as:

obj(f) = > L(0) + > ().
The loss function (L) measures the difference between actual and projected values, while the regular-
ization function (£2) measures the training model’s complexity to prevent overfitting,

1
0(0) =27 + SAlw?

where w is the score assigned to each leaf node and T is the total number of leaf nodes. Controlling
factors like v and A are used to prevent overfitting.

The expected score for the ¢t-th tree can be stated as follows when a new tree is constructed to
accommodate residual errors of the previous iteration:

i =58V 4 fi(x).

Thus, the objective function is recast as follows:
L9 =51y, gV + fili) + Q). (1)
i=1

For each suitable function f;, the second-order Taylor polynomial of f; = 0 is substituted. As a result,
the objective function can be roughly represented by:

“ _ 1

> [l(yz',?ﬁi(t Yt gifulw) + §hift2(xi):| +Q(fr)
i=1

If h; represents the second-order derivative and g; is the first-order derivative:

(-1 A(t—1 L(t—1 ~(t—1
g =05 iy, 9 Y), b= 0% V(o).
As a result, Eq. (1) can be reduced as follows since the residual errors (y) of earlier (¢ — 1) trees have
little bearing on how the objective function is modified,

_ n 1
Lo =%" [gifm) + ghift?(xi)} +Q(f).
i=1
All examples belonging to the same leaf node can be reconstructed as follows once each instance is
finally classified into a single leaf node:

obj® = ZT: {(Zgi)wj + %(Zgz +)\>w]2} + 7.
; icl

i=1 b el

Consequently, the objective function and optimal w are obtained as follows:

G, I &
¥ = bj=—= . T.
A P 2.ZH]-+A+’Y
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Fig. 4. Schematic of XGBoost Trees.

XGBoost is a powerful algorithm for tree creation due to its dependable objective function, useful
functions like dividing threshold and maximum depth, and overfitting-avoidance techniques like column
subsampling and shrinking. Shrinkage limits the influence of a single tree, while column subsampling
creates a tree with only a portion of attributes, similar to a random forest. The next parameter in our
XGBoost model in Keras is in Table 3.

Table 3. Hyperparameters for XGBoost model.

Parameter | Base score | Booster | NV estimators | Objective | Max depth | Learning rate | Verbose
Value 0.5 gbtree 15000 reg:linear 3 0.01 100

9. Measure metric

Through the use of measures like mean absolute error (MAE), mean absolute percentage error (MAPE),
root mean squared error (RMSE), and correlation coefficient (R2), this study assesses the effectiveness
of three models in forecasting the volatility. The average percent discrepancies between predicted and
actual values are represented by MAE, the average squared errors between observed and predicted
values are measured by RMSE, and the alignment between expected and actual numbers is determined
by R2,

N
MAEzﬁgwxi—m 2)
1 N a:i—:fi
MAPE:N; — (3)
1 N
RMSE = N;(asi—@)?, (4)

RZ=1— M (5)
Zz]\;l(xl — &) 7
where N is the total number of run-up data that have been seen, z; and (&;) are the i-th observed and
forecasted run-up values, respectively, and & is the mean observed run-up value.
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10. Experimental results

We will use the Moroccan treasury bill reference rate download from
the website of Bank Al-Maghrib as our time series data set and make

Table 4. Statistics of data.

Ngize;?sfs?j;a 3906705 predictions from July 1, 2015 to November 31, 2023.
Mean 00217 The 3075 datasets are divided into training and testing data for im-
Std 0.0047 plementing LSTM, GRU, and XGBoost algorithms. The ideal split is
Max 0.04 80:20 or 70:30, with training taking up 80% or 70% and testing 20% or
Min 0.013 30%. The 70:30 ratio was used in this study but can vary depending on

Quartile: 25% | 0.017 dataset size.

Quartile: 50% | 0.0225 Table 4 summarizes the data statistics.

Quartile: 75% | 0.024 The outcomes of three models are depicted in Figure 5. We use the

Python programming language to make the graphs.

Comparison of prediction results of various models
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Fig. 5. Comparison of predictions of the three models.

Table 5 summarizes the mea-

Table 5. MAE, MAPE, RMSE, and R? values of the three models. ) ’
sure metric computations for LSTM,

2
ML Method | MAE | MAPE | RMSE i GRU, and XGBoost models. The
LSTM 0.001 | 0.043 | 0.00145 | 0.9571 MAE. MAPE. and B2 of GRU and
GRU 0.00086 | 0.04 | 0.0011 | 0.972 ’ ; an © an
XGBoost | 0.00047 | 0.022 | 0.0007 | 0.9801 XGBoost are roughly equal.  XG-

Boost has slightly lower values than
LSTM, with values of 0.00047, 0.022, and 0.9891. The correlation coefficient of 0.971 for XGBoost

shows that it performs better at forecasting the yield curve than other models.

11. Conclusion

Machine learning researchers have been using financial time series forecasting for more than 40 years.
With the advent of deep learning implementations for financial forecasting research, the financial
community has recently experienced a surge in activity, leading to the appearance of numerous new
articles. We provide a deep learning method in our work that can analyze and forecast time series.
The three suggested methods are eXtreme Gradient Boosting (XGBoost), managed recurrent units
(GRU), and long-term memory (LSTM). To provide a summary of the state-of-the-art in the field of
deep learning applications to financial time series forecasting. For univariate and multivariate time
series forecasting, this work used the scikit-learn, Pandas, NumPy, and Matplotlib machine learning
libraries in a PythonSciPy environment together with the Keras, Tensor, and Xgboost Flow deep
learning libraries. The decision was driven mostly by deep learning models’ increased capacity to
represent time-dependent data and their adaptability in capturing process non-linearity. Each model’s
performance was confirmed in terms of R?, RMSE, MAE, and MAPE. The xgboost model outperformed
all the other models in terms of forecasting performance, according to the results.
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MopisHsanHa LSTM, GRU ta XGBoost gnst nporHo3yBaHHsA
KpuBoi aoxigHocTti Mapokko

Ka6 K1, Cayni F0.2, @amayr M. E. M.}

L Vnieepcumem Cyamana Mysas Caiman, Jabopamopia exonomiry ma ynpasiinmus, Xypibza, Mapoxko
2 Vuisepcumem I6n Togain, Jlabopamopis nepedosux cucmem ma inocenepii, Kenimpa, Mapoxko

Cdepa 1nporsosyBaHHsl 4acOBUX PsIIiB 3HAYHO 3pPOCJa 38 OCTAHHI JEKIJIbKa POKIB 1 3a-
pa3 JyKe akKTHBHA. ¥ 0araTrbox ODJIACTSX 3aCTOCYBAaHHS IJIMOOKWX HEHPOHHUX MEPEXK €
TOYHUMH Ta MOTYKHAMHA. depes 1 haKTOPU BOHU € OJHUMHU 3 HAUTOIY/ISPHIIINX METOIiB
MAITMHHOTO HABYAHHS JJIsl BUPIIIIEHHS TPOOJIEM 13 BEeJIMKUMU TaHUMU. [CTOPUYHO icHYBaJIo
6araTo MeTOJIB /IJIsi TOYHOI'O IPOTHO3YBAHHS HACTYIIHUX 3MiH NaHUX 4acoBuX psasis. IIpo-
OJieMa TTPOTHO3YBAaHHS YACOBUX PsAJIIB Ta 1T MaTeMaTHIHI OCHOBH BIEpIe chopMyTbOBaHi
B IIbOMY JtociizkeHHi. [lic/ist Iboro HaTa€ThCs OMUC HARTOMY/IAPHIIIIX apXiTeKTyp rndo-
KOI'O HaBYaHHS, fIKi HA CbOTOJHI YCHIIITHO BUKOPUCTOBYIOTHCS JIJIsi IPOTHO3YBAHHS YACOBUX
psiB, mMAKpecao0Yn SK IXHI mepeBard, Tak i Hemosikn. OcobiauBa yBara MpUILISE€THCS
MepeKaM IIPSIMOrO 3B'd3Ky, PeKyPEeHTHUM HEHPOHHMM MepexkaM (TakuM K Mepexi Ei-
MaHa), J0Bro- ta KoporkouacHiit mam’siti (LSTM) i BeHTUIBHUM peKypeHTHUM GJI0Kam
(GRU). Kpiwm Toro, nepesaru meromy posmmpenoro jepesa XGBoost mokazasu iforo me-
peBary B YHMCJIEHHUX 3MAaraHHsX 3 aHAJI3Y JaHNX 38 OCTAHHI POKU. 3TiIHO 3 Pe3y/IbTaTaMHU,
BHUCOKI KOeIIieHTr METPUYHAX MOKA3HUKIB BKA3yIOTh HA Te, M0 3aIIPOIIOHOBAHA MO/IE/b
XGBoost 3abe3nedye XOpoIry MpOrHO3Hy MPOLYKTUBHICTS.

Knto40Bi cnoBa: npozrosysartsi; Kpuea doTioHOCMi, 2AUb0Ke HABUAHHA; J0620CMPOKOEa
NaM’AMb; BEHMUNOHUT PEKYPEHMMHUT OAOK; EKCMPEMAALHE NOCULEHHA 2PAJIEHMA.
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