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The prediction of failures in a factory is now an important area of industry that helps to
reduce time and cost of non-quality from the data generated from the sensors installed
on production lines, this data is used to detect anomalies and predict defects before they
occur. The purpose of this article is to model an intelligent production line capable
of predicting various types of non-conforming products. For that, we will utilize the
neural network methodology within the specific context of a production line specialized
in juice manufacturing. Firstly, we introduce the production line under study, along
with its distinct manufacturing phases. Secondly, we evaluate the performance indicators
of this line, enabling us to gain an overview of its efficiency and overall performance.
Subsequently, we present common industrial solutions that are frequently implemented to
address the issues identified during our analysis. At this stage, we propose a predictive
model based on neural network methodology. This model will possess the capability to
detect and identify defective products and potential hazards within a production line
before they occur. Throughout this study, we compare between three models of neural
networks: LSTM model using Stochastic gradient descend (SGD), Feed forward model
using ADAM Optimization and Feed forward model using Levenberg-Marquardt back
propagation (LMBP), in order to determine the most optimal method in terms of achieved
results. Finally, we demonstrate the effectiveness, performance, and accuracy of the results
through the testing phase of the neural networks.
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1. Introduction

The global context of the manufacturing industry is characterized by a complex and eve revolving
dynamic. This sector plays a fundamental role in the global economy, encompassing a diversity of
industries ranging from automotive production to the manufacturing of consumer goods. The manu-
facturing industry serves as a driver for job creation, technological innovation, and economic growth on
a global scale. However, it also faces significant challenges such as increasing pressure to reduce costs,
the rapid adoption of new technologies, and the need to adapt to increasingly stringent sustainability
standards. Industry 4.0 refers to the fourth industrial revolution, where a new technological develop-
ment has occurred in production systems. This development has evolved as a result of the integration
of the Internet of Things, cyber-physical systems, Big Data, artificial intelligence, and cloud computing
into industrial systems. This integration has enabled new management capabilities to reach a higher
level of excellence, efficiency, and effectiveness. Several issues can arise in a production line, such
as high scrap rates, corrective maintenance downtime, inadequate production planning and schedul-
ing, logistic problems. Industry 4.0 has proposed effective solutions by harnessing advanced artificial
intelligence technologies to address these problems. Among these solutions, additive manufacturing,
production-planning using a holonic approach, as well as predictive maintenance and defect prediction.
In this article, we will specifically concentrate on the concept of predicting quality defects within a
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production line. Minimizing defects in the production process is of crucial importance for companies
operating in the manufacturing sector. Production defects have a significant impact on the quality of
finished products, potentially leading to a decrease in customer satisfaction and a deterioration of the
company’s reputation. Additionally, the costs associated with correcting defects after production can
be substantial, encompassing expenses related to repairs, product recalls, and potential sales losses.
Operational efficiency is also heavily affected, as defects can result in production delays, inefficient
use of resources, and an increase in labor costs. In a competitive global market focused on quality
and customer satisfaction, defect minimization becomes imperative to maintain competitiveness, retain
customer loyalty, and ensure the long-term sustainability of the company. Thus, strategies aimed at
preventing and predicting defects before they occur become essential elements of modern production
management. Production defects have a significant financial impact on various crucial aspects within
a manufacturing company. Firstly, the costs associated with correcting defects can be substantial,
including expenses related to product recalls, repairs, and production rework. These costs not only di-
rectly affect the company’s financial results but also result in inefficient use of resources. Additionally,
defects compromise the quality of finished products, leading to merchandise returns, customer losses,
and a deterioration of the company’s reputation. Lastly, customer satisfaction is greatly affected, as
defective products can result in negative experiences, complaints, and additional costs associated with
managing dissatisfaction. Thus, the financial effect of production defects ripples throughout the entire
value chain, emphasizing the imperative to implement effective strategies to prevent and minimize
these defects. The prediction of scrap products aims to anticipate defects before they occur, enabling
a reduction in waste costs and an improvement in customer satisfaction rates. The objective of this
article is to introduce a novel approach for predicting defective products using neural network technol-
ogy. This approach will be exemplified through the examination of a real case study on a production
line specialized in juice manufacturing.

2. Failure prediction model

2.1. Literature review

Predictive maintenance and defects prediction is a rapidly growing research field aimed at enhancing
the efficiency and reliability of industrial systems. The use of neural networks for defects prediction
has garnered increasing interest due to their ability to model complex data, such as time series, and
capture subtle patterns. Reference [1] proposed an LSTM model for defect prediction in manufacturing
systems, demonstrating improved accuracy compared to traditional methods. LSTMs are capable of
retaining information over long time sequences, making them ideal candidates for capturing intricate
dependencies within the data. Reference [2] presented a failure prediction of turbine blade coatings
using feed forward network. The model exhibits better prediction accuracy on interface oxidation,
damage evolution and failure region of TBCs on turbine vane. Reference [3] developed a new hybrid
model for predicting air quality combining Holt-Winters and deep learning approaches. The results
founded indicate a good finding with an index of agreement equal to 0.91 and a lower value of the
error indices MSE = 0.0032. Reference [4] proposed a new intelligent and data-driven product quality
control system of industrial valve manufacturing process using a BP neural network. This model shows
that the new quality control system has good accuracy and practicability. Reference [5] reformulated
a diabetes prediction using an Adam’s algorithm and Tikhonov regularization. Then, they compared
with the Stochastic gradient descend which approved a high performance of the proposed algorithm.
Huang and Li (2023) introduced a Levenberg–Marquardt algorithm to realize a predictive control model
of seismic responses of a novel seismic isolation and non-seismic isolation composite structure system.
This method can effectively reduce the adverse effects of time lag on the structural control system.

2.2. Quality control

In a company, there are various sources of waste that can optimize operational efficiency and reduce
profitability. Mudas refer to the forms of waste in production and management processes, and are
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primarily associated with the philosophy of Lean Manufacturing, which aims to eliminate any activity
that does not add value to the product. The concept of Mudas was developed in Japan by Toyota
in the 1940s and 1950s and has become a central element of the company’s production system, also
known as the Toyota Production System (TPS). Taiichi Ohno, one of the main architects of the TPS,
popularized the term “muda” means “waste” in Japanese, and it. The primary goal of the TPS was to
achieve a “just-in-time” production, where the quantity of products manufactured precisely matched
the market demand, with no excess inventory or waiting time. There are seven types of wastes (mudas)
within the framework of Lean Manufacturing:

1. Overproduction: Producing more than necessary or before the demand exists, resulting in excess
inventory and high storage costs.

2. Waiting: Downtime or waiting time between different production stages, slowing down the overall
process.

3. Transportation: Unnecessary movement of products or materials, which can increase the risk of
damage or loss.

4. Over processing: Adding unnecessary features to the product, increasing costs without adding extra
value for the customer.

5. Inventory: Having too much stock, which can lead to high storage costs.
6. Unnecessary Motion: Unnecessary movements of operators or machines, which can lead to fatigue

or errors.
7. Defects: Producing defective or non-compliant products, resulting in additional costs for repair or

rejection.

The Lean Manufacturing approach aims to identify and eliminate these forms of waste to improve
efficiency, reduce costs, and deliver higher-quality products. This methodology has been widely adopted
in the manufacturing sector and beyond, remaining a crucial tool for businesses seeking to optimize
their operations and create value for their customers. The concept of quality always emerges as a major
and relevant pillar to validate the performance and efficiency of a company. It is defined according
to the ISO 9001 standard as the ability of the company to meet the requirements and expectations
of its customers through appropriate policies and strategies that demonstrate and ensure its serious
commitment [6].
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Water supply

Mixing Cooling Quality control Syrup storage Adding pulp

Quality control Storage in buffer
tanks

Pasteurization and
cooling

Quality control Mixture storage

Aromatisation Conditioning On-Conditioning
Storage and

Shipping

Fig. 1. Juice manufacturing diagram.

The companies are focused on exploring their requirements in terms of product or service compli-
ance. This notion of compliance is explicitly exploited in the calculation of the company’s performance
indicators, specifically the Overall Equipment Efficiency (OEE) calculation. The NF E60-182 standard
defines OEE as the ratio of fully productive time to planned productive time. We can further break it
down as:

OEE = Quality rate × Performance rate × Availability,

Qualityrate =
The yield produced

The production quality
,

Availability =
Total hours planned-Lost time

Total hours planned
,

Mathematical Modeling and Computing, Vol. 11, No. 3, pp. 692–701 (2024)



Conception of a new quality control method based on neural networks 695

Performancerate =
Acutal Machine Speed

Design Machine Speed
.

Over a period of six months, we calculated the OEE as illustrated in Figure 2.
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Fig. 2. OEE calculation. Fig. 3. KPIs calculation.

We observe an average value of the Overall Equipment Efficiency (OEE) rate equal to 49% during
these 6 months of study. In the industry, the OEE is considered satisfactory if its value approaches
100%. Therefore, in our case, it is imperative that we implement methods aimed at improving this
rate. On Figure 3, the quality rate shows the lowest values, necessitating a thorough analysis of the
root causes of the defects in order to propose relevant corrective actions. The execution of this analysis
begins with identifying the most frequent defects through historical data and consolidating them into

Ishikawa diagram

Fault Tree Analysis

5 Why’s Analysis

Fig. 4. Failure root causes analysis
steps.

a Pareto chart. Next, we determine the signatures of critical de-
fects. This step helps us to collect various data and specifications
that characterize each failure, which facilitates the development of
relevant improvement actions. Subsequently, we reach the step of
analyzing the root causes of defects. It is a systematic problem-
solving method introduced by Taiichi Ohno.

Through this analysis, we had the opportunity to access to
the defect history that occurred on this production line over the
past three years. This allowed us to collect more than 1000 data.
Continuing with the steps mentioned above, we identified the most
common defect types (16 defects identified) and matched them
with their root causes (21 causes).

2.3. Predictive approach based on neural networks

A predictive approach based on neural networks represents a cutting-edge methodology in the realm
of data-driven forecasting and decision-making. Neural networks, inspired by the structure of the
human brain, excel at recognizing complex patterns and relationships within vast datasets. In a
predictive context, these networks are trained on historical data to discern underlying patterns and
trends, enabling them to make informed predictions about future outcomes. The strength of this
approach lies in its ability to adapt and learn from data, allowing neural networks to capture intricate
nonlinear relationships that might elude traditional statistical methods. This predictive power finds
applications in various fields, from finance and healthcare to manufacturing and marketing, where
accurate forecasting is essential for strategic planning. Leveraging the capabilities of neural networks
in predictive modeling not only enhances the accuracy of predictions but also provides valuable insights
for informed decision making in dynamic and evolving environments. The proposed methodology
involves training the machines installed along the production line to react intelligently to these issues.
In other words, we will introduce the identified defect causes from the conducted analysis as input
data, while the defect types will constitute the output data. This way, the machines will constitute a
learning process concerning these defects, enabling us to predict these anomalies before they occur.
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Table 1. Defects associated to causes.

Description of Defect Cause of Defect
Development of pathogenic bacteria, Storage of the finished product at

yeasts, and molds a temperature > 6◦C
Inadequate storage conditions

Foul odor in the finished product Presence of volatile substances and
impurities in the steam used for packaging

closure
Contamination by pathogenic agents Defective sealing of the packaging closure

Use of contaminated steam for sealing
the packaging jar

Microbial contamination Contamination through compromised
conduits conveying juice from the

pasteurizer outlet to the temporary storage
tank, or due to inadequate tank cleaning

Persistence of thermoresistant spores Non-compliance with pasteurization
and pathogenic germs temperature scale: (89 to 94◦C/18 s)

Partial degradation of enzymes (pectinases)
Proliferation of pathogenic and spoilage Non-compliance with storage temperature (6 4◦C)

microorganisms in the mixture Usage of contaminated water or ingredients
Proliferation of pathogenic and spoilage Non-compliance with nectar preparation quantities

microorganisms in the mixture Insufficient acidity
Possible contamination of syrup by Non-compliance with storage conditions

molds or fungi (Mucor) (cooling, hygiene, and enclosure integrity)
Residues from cleaning and disinfection products Insufficient rinsing of the mixer

Contamination of orange juice concentrate Presence of leaks in the packaging bags of
by cleaning solvents, detergents, and biocides juice concentrate within the cold chambers

Inadequate rinsing of cold chambers after
applying cleaning solvents, detergents, and

biocides
Proliferation and persistence of microorganisms/ Defects in refrigeration (proliferation due to

spoilage agents non-compliance with storage temperature
(yeasts and molds: Aspergillus, Fusarium) guidelines)

Break in the cold chain
Plastic bags used for packaging juice concentrate
for refrigeration are contaminated or not properly
sealed, allowing air entry and promoting bacterial

proliferation
Development of pathogenic microorganisms High water activity (aw > 0.85) due to issues

with applying temperature and pressure parameters
in the three-effect evaporation system (temperature

and/or pressure drop)
Presence of pulp in the juice (risk of heat Centrifugation or clarification issues

exchanger clogging in subsequent processing stages) at the clarifier level
Presence of seeds (release of a bitter taste

in the juice in case of their rupture)
Proliferation of bacteria, yeasts, and Elevation of juice temperature due to

molds (Aspergillus, Fusarium) a malfunction in the plate heat exchanger operation

3. Neural networks

The neural network method is a sophisticated machine learning approach inspired by the functioning
of the human brain. Comprising interconnected layers of nodes, neural networks are capable of per-
forming complex tasks such as pattern recognition, classification, and prediction. What sets neural
networks apart is their ability to learn from data. During the learning phase, the network automat-
ically adjusts its weights and parameters based on patterns identified in the training data. These
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adjustments enable the network to generalize its knowledge and make informed decisions on new data.
The advantages of neural networks lie in their ability to process complex and nonlinear data, adapt
to changing environments, and deliver high performance in areas such as computer vision, natural
language processing, and prediction. Their versatility and ability to model subtle relationships make
them a powerful method for solving complex machine learning problems.

In this article, we work with:

a) Feed forward networks (case a), LSTM networks (case b).
b) 10 hidden layer with 18 neurons.
c) The input layer consists of 21 neurons (corresponding to 21 causes).
d) Output layer consists of 16 neurons (16 types of failures).
e) 600 data are used in the learning phase and 400 are allocated for the testing phase.
f) Forward propagation: We use the activation function as: Sigmoid, RelU, Tanh.
g) Optimization algorithm: SGD in LSTM model, ADAM and LVBM in feed forwards model.

LSTM model is presented like:

Forget gate: ft = σ
(

Whfht−1 +Wxfxt + bf
)

,

Input gate: it = σ
(

Whiht−1 +Wxixt + bi
)

,

Output gate: ot = σ
(

Whoht−1 +Wxoxt + bo
)

,

ct = ft ∗ ct−1 + it ∗ tanh
(

Whhht−1 +Wxhxt + bt
)

,

ht = ot ∗ tanh(ct).

Input node

Input Gate

Sigmoid Sigmoid Sigmoid

Forget Gate

tanh

Output Gate

tanh

Previous time step Current time step Next time step

Fig. 5. LSTM model representation.

Stochastic gradient descent is presented like:

wl
i,j = wl

i,j − α∇wl
i,j,

bli,j = bli,j − α∇bli,j,

where α is the learning rate, wl
i,j is the weight of the ith neural of the lth layer that comes from the

jth neural of the previous layer, bli,j is the bias of the ith neural of the lth layer that comes from the

jth neural of the previous layer, ∇wl
i,j = ∂J

∂wl
i,j

is gradient descent of the cost function for the wl
i,j ,

∇bli,j =
∂J
∂bli,j

is gradient descent of the cost function for the bias bli,j.

ADAM Optimizer is presented like:

Vdwl
ij
= β1 · Vdwl

ij
+ (1− β1) · ∇Jwl

ij
,

Vdblij
= β1 · Vdblij

+ (1− β1) · ∇Jblij
,
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Sdwl
ij
= β2 · Sdwl

ij
+ (1− β2) · (∇Jwl

ij
)2,

Sdblij
= β2 · Sdblij

+ (1− β2) · (∇Jblij
)2,

V corrected
dwl

ij

=
Vdwl

ij

1− βT
1

,

V corrected
dblij

=
Vdblij

1− βT
1

,

Scorrected
dwl

ij

=
Sdwl

ij

1− βT
2

,

Scorrected
dblij

=
Sdblij

1− βT
2

,

wl
ij = wl

ij − α ·

V corrected
dwl

ij
√

Scorrected
dwl

ij

,

blij = blij − α ·

V corrected
dblij

√

Scorrected
dblij

,

where vcorrecteddwi
is momentum of weight wi,j after the correction of β1, v

corrected

dbi
is momentum of bias

bi,j after the correction of β1, β
T
1

is momentum β1 squared T iterations, scorrecteddwi
is moving average

of squared gradients of weight wi,j after the correction of β2, s
corrected

dbi
is moving average of squared

gradients of bias bi,j after the correction of β2, β
T
2

is momentum β2 squared T iterations.
Lmbp optimization: It is a method used to minimize the cost function of a neural network.

LVBM utilizes an approximation of the Hessian matrix (the matrix of the second partial derivatives
of the cost function) by combining the Gauss-Newton method with the SGD (Stochastic Gradient
Descent) method. The weight is presented like:

w(t+ 1) = w(t)−
(

JT
t Jt + µI

)−1
JT
t e,

where e = A− Y , Y is the value of expected result, A is the value of the result found, Jt is Jacobian
matrix for the cost function.

3.1. Results and discussions
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Fig. 6. Curve of MSE for the LMBP Optimization. Fig. 7. Curve of MSE for the ADAM Optimization.
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On the first graph, we can observe that the cost function reached the value 5.6 × 10−6 after 400
iterations performed. On the other hand, the second graph, which refers to the model developed using
ADAM optimization, reached the value 8.2× 10−7 after only 160 iterations. The third graph achieved
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Fig. 8. Curve of MSE for the LSTM model.

an error value of 5.13 × 10−7 after 120 iterations.
Furthermore, we can see the difference in shape
between three curves. The first one exhibited
spikes after a regression towards an average value
of 10−6. Additionally, we can observe in the fig-
ure that during 200 iterations, the cost function’s
value did not undergo significant changes. On the
other hand, we can see that the second and third
method yielded a more optimal result in terms of
the founded value and in terms of processing time.
Thus, we can observe that the second and third
model achieve a similar value of MSE. As a result,
we can say that the ADAM optimization and the
LSTM model had proved their performance and their efficiency to predict defects on a production line.
We choose to adapt ADAM optimization in the phase of Test. As mentioned above, we divided the
collected data into two parts: the first dedicated to training and the second devoted to the testing
phase. The testing phase of a neural network is a crucial step in evaluating its performance. After
being trained on a dataset, the network is exposed to data it has never encountered before, simu-
lating real-world conditions. During this phase, the neural network generates predictions based on
its previous learning. The primary goal is to assess the network’s ability to generalize its knowledge
and produce accurate results on novel data. The testing phase also helps identify potential overfitting
issues where the network performs well on training data but less effectively on new data. Good per-
formance during the testing phase indicates that the network can make precise and reliable decisions
in real-world situations, reinforcing its applicability for practical use. The result obtained during this
step is illustrated in a graph, which describes the value of the cost function for each data.
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Fig. 9. Curve of the cost function during the test phase.

The results shown in Figure 6 demonstrate the effectiveness and performance of our system in
predicting 75% of failures on the production line. The values are between 10−4 and 10−9; as a result,
we can validate the model developed.

4. Conclusion

The increasing complexity of production systems represents a major challenge for companies in the
manufacturing sector. As technologies evolve and market demands intensify, production systems be-
come progressively more sophisticated and interconnected. The integration of artificial intelligence,
advanced automation, massive data collection, and the Internet of Things (IoT) contributes to height-
ened complexity. While this sophistication aims to improve operational efficiency, product quality, and
flexibility, it simultaneously introduces challenges in terms of management and maintenance. Effec-
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tively coordinating the various components of the system, managing complex information flows, and
ensuring seamless interoperability between equipment become crucial. The rising complexity of pro-
duction systems calls for a strategic approach to ensure optimal performance while remaining adaptable
to future market and technological developments. Proactive prediction of defects holds significant po-
tential for enhancing operational efficiency and product quality in manufacturing environments. By
anticipating and identifying potential defects before they occur, companies can implement corrective
measures before major issues arise. A preventive approach helps minimize unplanned downtime, opti-
mize production processes, and reduce costs associated with repairs and returns of defective products.
Moreover, the ability to predict defects offers the opportunity to improve product quality by ensur-
ing early detection of undesirable variations in the manufacturing process. By integrating advanced
technologies such as machine learning and real-time data analysis, companies can create robust pre-
diction models that contribute not only to the proactive resolution of issues but also to the continuous
optimization of operations and the assurance of high product quality. Predicting failures using neural
networks is a valuable and powerful approach in various industries. Neural networks have demonstrated
their capabilities to analyze complex data patterns and identify potential failures before they occur.
By training on historical data and learning from past failure instances, the neural network model using
the gradient descent with ADAM Optimization proposed in this article was able to demonstrate and
to prove its capability to occur 75% of failures. The neural networks can adapt and learn from new
data, continuously improving their predictive accuracy over time. With their ability to handle large
volumes of data and process it quickly, we will work on the optimization of the cost function value and
time of training (number of iterations) to help industries to achieve higher reliability and productivity
while minimizing unexpected downtime and associated costs.
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Концепцiя нового методу контролю якостi
на основi нейронних мереж

Зубайдi З.1, Херру Б.1, Секкат С.2, Хадiрi Х.2

1Лабораторiя промислових технологiй, FST, Унiверситет Сiдi Мохамеда Бен Абделлаха,

Iмоуззерська дорога, п.с. 2626, 30000, Фес, Марокко
2IASI-ENSAM, Унiверситет Мулая Iсмаїла,
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Прогнозування збоїв на заводi зараз є важливою галуззю промисловостi, яка допома-
гає скоротити час i вартiсть неякiсних даних, отриманих вiд датчикiв, якi встановленi
на виробничих лiнiях. Цi данi використовуються для виявлення аномалiй i прогнозу-
вання дефектiв до їх виникнення. Метою цiєї статтi є моделювання iнтелектуальної
виробничої лiнiї, здатної передбачати рiзнi типи невiдповiдної продукцiї. Для цього
використовується методологiя нейронної мережi в конкретному контекстi виробничої
лiнiї, що спецiалiзується на виробництвi сокiв. По-перше, представлено дослiджувану
виробничу лiнiю разом iз її рiзними етапами виробництва. По-друге, оцiнено показ-
ники продуктивностi цiєї лiнiї, що дозволяє отримати уявлення про її ефективнiсть i
загальну продуктивнiсть. Далi подано загальнi промисловi рiшення, якi часто впро-
ваджуються для вирiшення проблем, що виявленi пiд час нашого аналiзу. На цьому
етапi запропоновано прогностичну модель на основi методологiї нейронної мережi. Ця
модель матиме можливiсть виявляти та iдентифiкувати дефектнi продукти та потен-
цiйнi небезпеки на виробничiй лiнiї до того, як вони виникнуть. Порiвняно три моделi
нейронних мереж: модель LSTM з використанням стохастичного градiєнтного спуску
(SGD), модель прямої подачi з використанням оптимiзацiї ADAM i модель прямої по-
дачi з використанням зворотного поширення Левенберга–Марквардта (LMBP), щоб
визначити найбiльш оптимальний метод з точки зору досягнутих результатiв. Накi-
нець, продемонстровао ефективнiсть, продуктивнiсть i точнiсть результатiв на етапi
тестування нейронних мереж.

Ключовi слова: OEE; ADAM; LMBP; LSTM; SGD; передавання; нейроннi мережi;

дефекти якостi; першопричини дефектiв.
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