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With the rapid advancements in internet technologies over the past two decades, the
amount of information available online has exponentially increased. This data explosion
has led to the development of recommender systems, designed to understand individual
preferences and provide personalized recommendations for desirable new content. These
systems act as helpful guides, assisting users in discovering relevant and appealing in-
formation tailored to their specific tastes and interests. This study’s primary objective
is to assess and contrast the latest methods utilized in recommender systems within a
distributed system architecture that relies on Hadoop. Our analysis will focus on col-
laborative filtering and will be conducted using a large dataset. We have implemented
the algorithms using Python and PySpark, enabling the processing of large datasets us-
ing Apache Hadoop and Spark. The studied approaches have been implemented on the
MovieLens dataset and compared using the following evaluation metrics: RMSE, precision,
recall, and F1 score. Their training times have also been compared.

Keywords: recommender system; collaborative filtering; Hadoop; Spark; similarity.
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1. Introduction

A recommender system is a mechanism that anticipates and proposes items or content that users
will likely find interesting or valuable by predicting and suggesting them. These systems have gained
popularity in recent years, revolutionizing the way we discover products, movies, music, articles, and
even potential connections in social networks. By analyzing user preferences, their past behavior, and
other relevant data, recommender systems can significantly enhance user experiences by providing
personalized recommendations that match individual tastes and needs [1].

To meet the increasing demands for scalability and processing large datasets, modern recommender
systems often rely on distributed computing frameworks such as Hadoop and Spark [2|. These frame-
works provide powerful tools and infrastructure for processing and analyzing massive amounts of data
in a distributed manner, enabling recommender systems to handle the immense scale and complexity of
contemporary datasets. The combination of Hadoop and Spark offers numerous advantages. Hadoop
provides a solid foundation with its Hadoop Distributed File System (HDFS) storage, batch processing
using MapReduce and resource management using YARN, while Spark brings real-time analysis and
interactive capabilities with its in-memory engine.

Indeed, these components work in synergy to provide a distributed framework capable of efficiently
handling large amounts of data required for building recommender systems. HDFS provides scalable
and fault-tolerant storage, Spark offers real-time and in-memory processing capabilities, while YARN
allows for managing and sharing cluster resources among Spark applications. Together, they enable
recommender systems to effectively handle the scale and complexity of contemporary datasets.

This work aims to perform an extensive comparative analysis (qualitative and quantitative) of
collaborative filtering-based recommender systems under the framework of Hadoop and Spark. We
aim to evaluate and compare various approaches in terms of effectiveness, efficiency, and applicability
when used in distributed computing systems.
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The remainder of the document is organized as follows: an overview of recommender system tech-
nology is given in Section 2, Section 3 presents each of the techniques used in the comparative study,
Section 4 introduces the implementation and results, followed by a comparison of the results, Section 5
concludes the paper.

2. Recommender systems approaches: state of the art

A recommender system uses sophisticated techniques that filter through tons of data to determine
connections between the user and other users or between different products and content. Based on
the patterns it discovers, the system understands what the user may appreciate even without explicit
requests. Three conventional recommender strategies that are frequently employed are content-based
filtering, collaborative filtering, and hybrid filtering. Each recommender algorithm has its own advan-
tages and disadvantages [3]. Another emerging recommender technique is contextual filtering [4].

2.1. Collaborative filtering (CF)

Collaborative filtering is a popular recommender system technique, which generates relevant recom-
mendations based on previous rating information, reviews, and comments. This method operates
without requesting external data, instead relying on the users’ (or items’) similarities [5]. With two
dimensions (users and elements), the collection of preferences creates an evaluation matrix, where each
row denotes a user and each column an element. The similarity between two users (elements) depends
on the similarity of the evaluation history of these two users (elements). The collaborative filtering
algorithms are mainly classified into two categories: memory-based and model-based.

Memory based approach uses historical user evaluation data to identify similarity between users or
items. These techniques aim to establish a similarity metric between users or items, and find the most
similar ones to recommend unseen items. While model-based creates a model using the dataset and
gives the user recommendations based on the model. This method learns a model by using users’ past
evaluations and improves the performance of CF technique. CF offers a number of significant benefits,
including the ability to function in domains with less article content, and where the content is difficult
to analyze for a computer system [6].

Khalid Haruna et al. 7] presented a collaborative approach for a research paper recommender
system. In order to tailor recommendations, it makes use of the benefits of collaborative filtering
and publicly accessible contextual information to deduce the unnoticed relationships between research
publications.

2.2. Content-based filtering (CBF)

In content-based filtering technique, user recommendations are based on the behavior and data of a
single user. The description of items and the user’s profile play an important role in content-based
filtering technique. The following is the fundamental idea behind CBF recommender systems:

— Firstly, we examine the description of the preferred items by a specific user to figure out the
preferences that can be used to characterize those items. These preferences are saved in a user
profile.

— Secondly, each attribute is compared with the user’s profile so that only relevant items that exhibit
a high degree of similarity with the user’s profile are recommended to that particular user.

A work by VIANA and SOARES [8] looks at how different metadata elements might be applied
to improve the quality of recommendations for multimedia content, particularly for movies and TV

shows. The studied metadata elements include title, genre, production date, and the list of directors
and actors.

2.3. Context aware recommender systems (CARS)

The context is necessary in order to explain the setting in which a user and an application commu-
nicate. CARS are able to comprehend the unique needs of each user and offer customized services.
Context in recommender systems is a key addition to tailor the recommendation provided to users.
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By incorporating context, conventional two-dimensional recommender systems are expanded to three
dimensions: context C, user U, and item I [9]. With this feature, CARS’s objective is now to precisely
prescribe actions to a specific user at the appropriate moment, in the appropriate setting, based on
user-specific data, including their present activity and emotional state [10].

A notable example is CReS [11], proposed by Thaipisutikul and Shih in 2021 which captures con-
sumers’ dynamic preferences through the use of a deep sequential learning technique. CReS addresses
the challenges of modeling the change in consumers’ interests over time, incorporating long-term pref-
erences, and providing interpretable recommendations. It employs a self-attention network to capture
short-term and long-term interests, considering the hierarchical connections between items and contex-
tual relations. This system aims to provide accurate and personalized recommendations while offering
interpretability through its attention mechanism. Overall, CReS is an example of a context-aware rec-
ommender system that leverages deep learning techniques to enhance recommendation performance.

2.4. Hybrid recommender system approaches

The hybrid filtering method combines several recommender systems approaches for better system
optimization in order to avoid certain limitations and issues of individual techniques. The hybrid
filtering technique’s concept is to combine methods that will offer recommendations that are superior
and more effective than those made by a single algorithm since the drawbacks of one algorithm will be
compensated for by another. There are different strategies to the hybrid filtering process that combine
two or more techniques. The hybrid algorithm has a few benefits, including the capacity to solve issues
with scalability, cold start, and new user concerns that other approaches cannot. The disadvantages
are that it is complex and costly to implement [6].

Table 1. Classification of hybridization methods.

Technique name Function

Weighted Combine many recommender system components in a numerical manner

Switching System alternates between recommender systems based on the circumstances at
hand

Mixed A group of recommenders is displayed together

Feature Combination Combine the various features and assign them to a single technique
Feature Augmentation | One approach’s output is utilized as an input feature by another approach

Cascade Applies a recurrent improvement. One recommender improves upon the suggestion
made by another
Meta-level One method is used to create a small model, and then another method is applied

to the input

3. Distributed approaches based on collaborative filtering for recommender systems

This section presents a thorough analysis of every method utilized. Implementation and results are
presented in the following sections.

3.1. Regularized user and item effect (RUME)

This term is inspired by the SVD++ model [12]|, which emphasizes the importance of considering user
and movie biases in collaborative filtering algorithms. By regularizing these biases, the model can
prevent overfitting and improve generalization to new data.

First, a range of regularization parameters A is to be initialized. Then we calculate the average
value of the ratings in the training set . Then, for each A value, we calculate the user and item biases.
The item bias b; is determined by taking the sum of the differences between the ratings given by users
for that particular item r;5 and the overall average rating p. This sum is then regularized by dividing
it by how many ratings that particular item has |R;| plus the regularization value \,

ZjeRi (Tij - ﬂ)

bi = )
‘Ri‘ + A

(1)

R; is the ratings for that item.
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On the other hand, the user bias is determined by taking into account the ratings they have given
to the items R, and the biases of those items b;. Regarding every item ¢ that the user u has rated, we
deduct the item bias b; and the overall average rating p from the user’s rating r;j of that particular
item. We then sum up all these differences and divide by the total number of items rated by the user
plus the regularization value. The final predictions p,i are the sum of the average u, the item bias b;,
and the user bias b,
2icr, (Tij — = bi) @)

|Ru| + A ’

Finally, we store the results in a list to identify the best regularization value based on the root
mean squared error (RMSE).

RMSE is one of the evaluation criteria of a regression model. It is a metric that shows the typical

difference between the values in the dataset that are real and the values the model predicts. The better
a model fits a dataset, the lower its RMSE [13],

by =

1
RMSE = | = D (pui = rui)?, (4)
| | (u,i)eT

where p,; is the prediction and r,; is the real rating each pair of users and items (u,i) in the test
dataset T'. And the total number of user-item pairings in the test dataset is denoted by |T'|.

3.2. Alternating least squares with weighted regularization (ALS-WR)

Introduced to solve scalability issues of massive datasets, ALS-WR [14] is one of the most well-known
recommender system algorithms. Let R be a rating matrix with user items where each element r;j
represents the score that user ¢ assigned to item j (or 0 if the user has not given the item a rating).
ALS-WR takes as input the training data R and the test data Test and has the goal to decompose
the matrix R into two latent factor matrices, U and V. It initializes the matrices U and V randomly,
the regularization parameter A, the convergence threshold e, the number of max iterations and the
dimension of the matrices of latent factors are defined. The method keeps iterating until it hits either
the maximum number of iterations or convergence.

In each iteration, it updates the corresponding rows of matrices U and V according to the next
equations:

U= (VxVT4Ax 1) VT xR, (5)
Vi= (UxUT+Ax1)"-U” xR, (6)

Then, it calculates the predictions P,; for each pair of user u and item 7 in the test data,
P =U, V. (7)

The RMSE is calculated based on the predictions. The variation in RMSE errors between two
consecutive iterations, called dif f, is also calculated. If dif f is less than the convergence threshold ¢,
it indicates that the algorithm has converged.

3.3. Memory based collaborative filtering (MCF)

In this algorithm, we compute a similarity matrix between the items (or users) and use it to estimate
the missing ratings based on the rating history. This allows us to recommend the highest-rated items to
each user. We put item-based and user-based collaborative filtering into practice, utilizing the Pearson
correlation coefficient and cosine similarity, two distinct similarity metrics.

Cosine similarity. By definition, cosine similarity is a positive number between 0 and 1, 1 if X and Y
are identical, and 0 if there is no similarity between the two. The cosine similarity is used to determine
the cosine of the angle that exists between two vectors, or two documents in vector space. The smaller
is the angle, the greater is the similarity. To find the cosine similarity between two vectors, x and y,
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we divide their dot product by the product of their magnitudes,
. -y
cosine(,9) = T ®)
Pearson correlation. It is used to measure how two sets of data are linearly related. The Pearson
correlation is a statistic with values ranging from —1 to +1, signifying perfect negative and positive
correlations, respectively. When there is no correlation between the variables under study, the value is
zero [15]. Tt is calculated for two vectors, z and y, by dividing their covariance by the product of their

standard variances,
cov(z,y)

r@y) = std(z) - std(y) ©)

In user-based collaborative filtering, to start, we compute a similarity matrix S for every user
included in the dataset. Then we keep only positive values in the matrix,

S = max(0,x) for each x in S. (10)

We then provide recommendations for the target user based on the ratings these similar users have

provided. The predictions are determined by calculating the weighted average of the ratings given by

the other users for the same item, g R
Pred, ; = Z O (11)

jeu ]
where Pred,,; is the prediction of the rating of the user u for the item 4, U is the list of the users who
have previously rated the item ¢, S, ; is the similarity between the users v and j, R;; is the rating of
the user j for the item 1.

In contrast, item-based collaborative filtering involves selecting a target item and identifying other
items that demonstrate similarity based on evaluations from users who have rated both items. The
predictions are calculated by taking the weighted average of the ratings given by the current user for
the other items.

3.4. K-means clustering + Memory based collaborative filtering (KMCF)

K-means clustering is a vector quantization technique that gained popularity for cluster analysis in data
exploration. It was initially employed in signal processing. With K-means clustering, an observation
is divided into k clusters, with each observation belonging to the cluster whose mean is closest to it,
acting as the cluster prototype.

In K-means, we begin by initializing the k cluster centroids at random, denoted as p1, po, ..., ti-
Then, for each data point z;, we calculate the distance to each centroid p; using one of the distance
measures below,

Euclidean distance:

d(:Ei,,Uj) = Z(:Elk - lujk)2’ (12)
k
where x; ;, and p1; are the kth coordinates of x; and p;, respectively.
Cosine distance:
d(z, puj) = 1 — cosine(x;, j15), (13)
where cosine(x;, f1) is the cosine similarity between z; and p;.
Next, we designate the cluster containing the nearest centroid for every data point z;, based on the
minimum distance:

C(x;) = argmin(d(z;, 15)) (14)
Next, we compute the mean of the data points allocated to each cluster in order to update the centroids
of each cluster,

1
i = T 2 1)

where x; belongs to C(j), and |C(j)| denotes the number of data points in cluster C(j).
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Until the cluster assignments no longer significantly change or a maximum number of iterations is
reached, we repeat those steps.

One of the constraints of this method is that it is necessary to determine the optimal number of
clusters in advance. The distance metric, which is a crucial parameter of this method, currently offers
two options: Euclidean distance and cosine distance. A visual depiction of the algorithm’s process can
be seen in Figure 1.

For each value of k: Plot the WSS for each k

Det ine th .
etermine the range Execute KMeans and value and identify the Phase 1:

gt || Sl | frascasanie | g
of clusters) Cluster Sum of clusters using the the optimal number
Squares (WSS) elbow method of clusters

—L

Execute KMeans

Calculate the similarity
matrices for each
cluster individually

—L

~N
Assign clusters to each . .
us%r in the training Split the training data Phase 2:
data based on the clusters KMeans
J
For each entity (user or
item) in the test set, Get the Ir:lbnearest
proceed as follows neighbors

.

Phase 3:
Memory based
collaborative filtering
Calculate the
Get ratings and predicted rating using
similarities from the weighted average Make
the neighbors of the neighbors’ recommendations
ratings

Fig. 1. Diagram of the process of the K-means clustering + Collaborative Filtering algorithm.

3.5. Decision Tree

Decision trees are a popular method for classification in data exploration. They help simplify the
decision-making process by creating a tree-like structure that divides the data into smaller subsets [16].
The final result is a tree with decision nodes and leaves, where decision nodes have multiple branches
and leaves represent a decision or classification. Decision trees can handle both categorical and nu-
merical data.

This algorithm is mostly used to solve classification problems, while it can also be used in regression
cases. It is composed of three types of nodes: the root node which acts as the starting point that further
expands to various branches making it a tree-like structure [17] the leaf node, which is the output of
decision nodes and has no further branches, and the decision node, which is used to make decisions
and has several branches. Decision tree simply forks the tree into sub-trees on the basis of answer to
question i.e. whether a yes or a no [17].
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Root Node

A A 4

Decision Node Decision Node
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Leaf Node Leaf Node Leaf Node Decision Node

Leaf Node Leaf Node

Fig. 2. Diagrammatic representation of a decision tree.

The first step of this approach treats the whole dataset as the decision tree’s first beginning point.
After that, it determines which feature is best for dividing the data while accounting for particular
factors like the Gini index.

Gini index is a measure to assess a node’s level of impurity. It measures the likelihood that a
randomly chosen element will be incorrectly classified in light of the node’s class distribution. The
following is a definition of the Gini index equation:

Gini=1-)_ P}, (16)
j

where P; is the likelihood that an item will fall into a specific class.

It then creates a decision node at that split point and divides the data into subsets according to the
values of the feature. Until a stopping condition is satisfied, this procedure is continued recursively for
every subset (e.g., reaching a maximum depth, minimum number of samples). At the leaf nodes, which
represent the final predictions, the decision tree assigns a majority class or computes the average value
of the target variable. During prediction, an input instance, depending on the feature values, proceeds
down the decision path from the root node to a leaf node, and the anticipated result is determined by
the corresponding leaf node’s value.

In the context of a recommender system, decision trees are trained using product features. In the
case of the MovieLens dataset, these features are represented by the genres of each film.

3.6. AutoRec: Autoencoders meet collaborative filtering

Deep learning can be viewed as a way to automate the process of performing prediction analyses due
to its inherent simplicity. In contrast to the linear nature of typical machine learning algorithms, deep
learning approaches consist of a hierarchy of increasing complexities and abstractions. Over time,
neural networks have emerged in various forms, including back propagation neural networks (BPNN),
convolutional neural networks (CNN), recurrent neural networks (RNN), and auto encoders (AE).
Neural networks are considered the most accurate artificial representation of the functioning of the
human brain [18|.
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AutoRec is an AE-based collaborative filtering model proposed by Sedhain et al. [19]. It is a model
that takes as input the representative vector of each item r(i) or user r(u), projects it into a latent
space of reduced dimension, and then reconstructs it in the output space of the initial dimension to
predict missing ratings for recommendation purposes. The authors of [19] used a set of base parameters
for the AutoRec model, which were then fine-tuned based on the RMSE metric. The best identified
parameters are:

— Activation function for the encoder f: f(z) = H%;

— Activation function for the decoder g: g(z) = z;
— Regularization parameter \: 0.001;

— Learning rate a: 0.0001;

— Number of epochs: 200.

However, the number of hidden units and batch size may vary depending on the size of the dataset
used and the approach (user-based or item-based).

The algorithm operates as follows in a matrix of interactions with m users and n items, where
r(i) = (R, ..., Rmi) represents the ratings of user i for each item, r(u) = (Ruy1,. .., Run) represents
the ratings of user u for each item, and h denotes the number of hidden layers: first, it initializes the
weight matrix W € R"*" bias vectors b € R, and ¢ € R™. Then, for each training epoch and each
batch of input vectors X (k):

1. Calculates the activation of the hidden layer for batch:

H® = f(wx® 4 p). (17)
2. Calculates the reconstructed output vector for the batch:
X'W = g(WH® +¢), (18)

where H®) is the hidden layer activation for a specific batch of input vectors X *).
3. Calculates the masked MSE for the batch utilizing the subsequent equation:

L®) = M® (xE — x[® 19
s M(’“ > ! "
where the mask matrix M®*) is a binary matrix of the same dimensions as the input vectors X (k).
Ml(jk) is the element of the mask matrix corresponding to the i-th user and j-th item in the k-th
batch, it is either 0 or 1, indicating whether the rating for that user-item pair is missing (0) or
present (1).
4. Calculates the regularization term:

n

h
1
=) SN W (20)
Jj=1k=1
5. Calculates the total loss for the batch:
Ly =W + R, (21)

where L) is the masked MSE for the k-th batch and R is the regularization term.
6. Backpropagation: Calculate the gradients

k k
8Lgozal aL‘Eozal 8L‘Eo‘2al (22)
ow ’ ob '’ oc

7. Update the Weights and biases using gradient descent:

(k) (k) B (k)
et total . 2 aLtotaul . ﬁ aLtotaul
W+ W E ( ), b+ b 5 1( % ), c+c BE ( e . (23)
where B represents the batch size.
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3.7. Decision tree + ALS-WR

This algorithm contains the implementation of the model proposed in [16]. It is a weighted hybrid model
that combines decision tree-based classification, which considers movie properties, with collaborative
filtering using ALS-WR matrix factorization. However, in cases where ALS-WR cannot provide a
recommendation or suffers from the cold-start problem, we use decision tree predictions.

4. Implementation and results

Having introduced the different recommender techniques and their foundations, we now delve into
a comprehensive examination of these techniques through a comparative study, encompassing both
quantitative and qualitative evaluations. Our study involves the practical implementation and rigor-
ous testing of each technique on the MovieLens dataset within a distributed environment. Specifically,
we conduct our experiments on a Hadoop/Spark cluster comprising three machines, following a Mas-
ter/slave architecture, with a total of 30 Gb ram and 70 Gb HDD Storage.

There were three MovieLens dataset variations used. MovieLens 100k, which has 100000 user
ratings for 1682 films submitted by 943 individuals. A total of 1000209 user ratings for 3900 films are
available on MovieLens 1M. Additionally, MovieLens 10M has 10 000 054 user ratings for 10 681 movies
from 71 567 people. To quantify the effectiveness of each method and identify the ones that are the most
efficient, we used different evaluation metrics, which are RMSE, precision, recall, f1 score and time.
But first we had to construct a confusion matrix. In order to do that, we start from the assumption
that any real rating above a certain threshold, such as 3.5, corresponds to a relevant element, and
any real rating below the threshold is not relevant. In other words, we consider a recommendation
as “relevant” if the user evaluates the article positively, and “non-relevant” if the user evaluates the
article negatively. This allows us to construct a confusion matrix, which we can then use to calculate
precision, recall, and F1 score. The following figures show the results of the study.

ALS-WR

Decision Tree

Decision Tree + ALS-WR
Iltem based AutoRec

-1.10

Iltem based KMCF with cosine similarity jj 105
£ Item based KMCF with Euclidean distance
g Iltem based MCF with cosine similarity - 1.00
S, Item based MCF with Pearson correlation [
< RUME 0.95
User based AutoRec
User based KMCF with cosine similarity 0.90
User based KMCF with Euclidean distance
User based MCF with cosine similarity 0.85
User based MCF with Pearson correlation 1
100K ™ 10M

Dataset

ALS-WR: Alternating least squares with weighted regularization
MCF: Memory based collaborative filtering

KMCF: K-Means + Memory based collaborative filtering
RUME: Regularized user and item effect

Fig. 3. RMSE results.

The evaluation of different recommender algorithms has yielded interesting results. Evaluation met-
rics such as RMSE, precision, recall, and F1 score provide an indication of the algorithms’ performance
on the MovieLens datasets.

Among the tested algorithms, ALS-WR and the RUME model showed good results in terms of
RMSE. This indicates a high predictive capability of the ratings. However, in terms of precision,
recall, and F1 score, these two algorithms obtained acceptable values but were lower than the other
algorithms. In terms of training time and memory management, the results suggest that those two
algorithms can be faster to train and more efficient in terms of resource management.
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Fig. 4. Precision results.
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Fig. 5. Recall results.
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Fig. 6. F1 score results.

Compared to the decision tree algorithm, we observe that in the MovieLens 100k dataset, decision
trees display high scores in RMSE, precision, recall, and F1 score. This suggests that they are capable
of generating high-quality recommendations and efficiently retrieving relevant items. However, this
algorithm encountered difficulties in handling larger datasets, resulting in a degradation of performance.
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Fig. 7. Training time results.

In terms of time, decision trees are relatively fast compared to memory-based algorithms but slower
than matrix factorization and RUME.

Moving on to the hybridization of decision trees with ALS-WR, in terms of results, this method
shows promise. It achieves high scores in RMSE, precision, recall, and F1 score, suggesting a significant
improvement compared to using ALS-WR alone. However, in terms of execution time, the hybridization
led to an increase in the training time compared to ALS-WR or decision trees alone. When comparing
the performance of other algorithms, we can see that these algorithms have a significant demand for
RAM management, especially for larger datasets (MovieLens 10M). This increased memory demand
can be considered a constraint in terms of system resource management. These algorithms require
storing interaction matrices, similarity matrices, or weighting coefficients to perform recommendation
calculations. This can result in a significant increase in memory consumption, especially as the dataset
size increases.

AutoRec achieves reasonable performance in both the 100k and 1M datasets, with relatively good
RMSE values. AutoRec based on item performs slightly better than user-based AutoRec. In general,
AutoRec exhibits high precision, good recall, and competitive F1 scores compared to other algorithms.

Analyzing the results of memory based collaborative filtering, we observe higher RMSE values
compared to other algorithms in the study. However, the precision, recall, and F1 scores are competitive
compared to other algorithms. Specifically, collaborative filtering with Pearson correlation presents the
best results. It is worth noting that this approach does not have a real learning phase but involves
data transformation to prepare it for predictions.

Moving on to memory based collaborative filtering with KMeans clustering, the results reveal the
highest RMSE values compared to other algorithms in the study, especially for the user-based approach.
However, in terms of precision, recall, and F1 score, it achieves competitive results compared to other
approaches. Specifically, user based KMCF with cosine distance achieves the best recall values for the
100k and 1M datasets.

5. Conclusion

This paper explores various collaborative filtering recommender algorithms, such as linear models, ma-
trix factorization, neighborhood models, autoencoders, decision trees, and hybrid approaches, using the
MovieLens dataset under the Hadoop/Spark framework. The study compares these algorithms using
evaluation metrics like RMSE, precision, recall, and F1 score. Matrix factorization models demonstrate
good prediction accuracy with faster training time and efficient resource utilization. However, they
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perform worse than other algorithms in terms of precision, recall, and F1 score. Decision trees show
high scores for all metrics, indicating high-quality recommendations and efficient retrieval of relevant
items in the MovieLens 100k dataset. However, they struggle with larger datasets, resulting in perfor-
mance degradation. Decision trees are relatively fast compared to memory-based algorithms but slower
than matrix factorization. Hybridizing decision trees with ALS-WR shows promising results, but it
requires more time for model training. Other algorithms like AutoRec and similarity-based collabora-
tive filtering or KMeans clustering also achieve competitive performance in certain metrics but require
significant memory management, especially for larger datasets. Ultimately, the choice of algorithm
depends on specific constraints, performance requirements, and resource availability. It is crucial to
consider these factors when selecting the most suitable recommender algorithm for a particular use
case.
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BennkomacwtabHi pekomeHaauiiHi CMCTEMUN 3 BUKOPUCTAHHAM
Hadoop i cninbHOT chinbTpauii: nopiBHsAIbHE A0CNIAXKEHHS

Yadixi M. E.}, Banyap O.!, Bencaiman M.?

LTabopamopia womn romeproi ma cucmemnot insicenepii, Ynisepcumem Kadi Atiada, Mappaxew, Mapoxko
2 Jlabopamopis nayxk, mexnivy ma ynpasainmns, Ywisepcumem Cidi Moxameda Ben A6deanraxa, Pec, Mapokko

3aBsgKK CTPIMKOMY PO3BUTKY IHTEPHET-TEXHOJIOTIH 38 OCTaHHI JBa JeCATUIITTS KiJIbKICTh
indopmariii, gocrymnuol B [HTepHeTi, ekcronenniaapao 3pocia. Lleit Bubyx maHux mpu3BiB
J10 PO3POOKY PEKOMEHIAIIITHIX CUCTEM, PO3POOJIEHUX JJIsi PO3YMIiHHS IHINBIIyaIbHIX YIIO-
H00aHb 1 HAJaHHA MEPCOHAIIZ0BAHUX PEKOMEHIAIl Iomo 6arkanoro HoBoro Bmicry. Ili
CHCTEMH CJIY2KATh KOPUCHUMU JIOBIIHUKAMH, JOTIOMAraloqi KOPUCTYBaYaM 3HAXOIUTU aK-
TyaJIbHY Ta IiKaBy iH(MOPMAIIiIo, siKa BiIIOBiIa€ TXHIM KOHKPETHUM CMaKaM Ta IHTEPECaM.
OCHOBHOIO METOIO IIHOT'O JOCTIIKEHHsT € OIIHKA Ta IMOPIBHSHHS HAWHOBIININIX METOIIB, sIKi
BUKOPHUCTOBYIOTHCS B PEKOMEHIAIINHIX CUCTEMAaX y MEXKaX apXiTeKTyPU PO3IOIIIEHO] CH-
cremu, sika ocHoBana Ha Hadoop. Hamr anasisz 3ocepemxenuit Ha cuinbhiit digbrpartii Ta
[IPOBOIUTUMETHCS 3 BUKOPUCTAHHSIM BEJIUKOr0o HAOOPy JaHux. PeasizoBaHo ajgropurmu 3a
jpomomororo Python i PySpark, mo j103BoJisie 06pobiisitu BeJIMKi HaOOpU JIaHUX 38 J0II0-
mororo Apache Hadoop i Spark. lociimkyBani migxoan peajii3oBaHO Ha HaOOpi JaHUX
MovieLens i nopiBHsgHO 3a TakuMmu mokasHukamu orinku: RMSE, tognicts, moBHOTA Ta
ominka F1. Takox mopiBHIOBaM Jac IXHIX TPEHYBaHbD.

Kntouosi cnosa: cucmema pexomendauit; cnisvna diavmpayin; Hadoop; Spark; cxo-
IHCICTND.
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