потоковий граф алгоритму

Optimization of the Algorithm Flow Graph Width in Neural Networks to Reduce the Use of Processor Elements on Single-board Computers

The article presents a method for optimizing the algorithm flow graph of a deep neural network to reduce the number of processor elements (PE) required for executing the algorithm on single-board computers. The proposed approach is based on the use of a structural matrix to optimize the neural network architecture without loss of performance. The research demonstrated that by reducing the width of the graph, the number of processor elements was reduced from 3 to 2, while maintaining network performance at 75% efficiency.

Виконання поданих потоковим графом алгоритмів з використанням технології GPGPU

Здійснено короткий огляд технологій виконання обчислень на графічному процесорі (GPGPU) та особливостей написання програм при їх використанні. Перевірено ефективність способу виконання поданих потоковим графом алгоритмів на прикладі алгоритму швидкого перетворення Фур’є на графічному процесорі (GPU) з підтримкою технології GPGPU. Показано перспективу цього способу як для виконання на GPU, так і на CPU.