машинне навчання

Інформаційна технологія для аналізу пунктів продажу мобільного оператора на основі методів кластеризації

Представлено дослідження, спрямоване на розробку та впровадження інформаційної технології моніторингу та аналізу сегментів пунктів продажу мобільного оператора з використанням методів кластеризації. Дослідження вирішує актуальну проблему в сфері маркетингу та бізнес-оптимізації, а саме: покращення стратегій мережі пунктів продажу мобільного зв'язку.

Сучасний стан підходів до моніторингу технічного стану лопатей вітрових турбін з використанням інформаційних технологій

Вітрова енергетика є одним із найважливіших та найперспективніших джерел екологічно чистої відновлювальної енергії. Для підвищення надійності та безпечності експлуатації вітрових турбін, а також для зниження витрат через технічне обслуговування та простої у неробочому стані, необхідно застосовувати сучасні методи моніторингу стану великогабаритних та високонавантажених деталей вітрових електростанцій з використанням інформаційних технологій. Розглянуто основні види дефектів та їхню класифікацію.

Спеціалізована програмна платформа для аналізу інформації в сховищах даних

У статті представлено дизайн, розробку та оцінку спеціалізованої програми для аналізу, розробки агрегацій даних і візуалізації великих обсягів даних. Основна мета цієї програми — спростити обробку даних, прискорити їх аналіз і полегшити написання коду для задач із великими обсягами даних. Для досягнення цієї мети використовується машинне навчання, а також два репозиторії.

Програма містить зручний і зрозумілий інтерфейс, сервери, що обробляють різні типи запитів від користувачів і передають їх в базу даних, а також саму базу даних з двома репозиторіями.

ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ РОЗПОДІЛЕНОЇ МАТРИЧНОЇ ФАКТОРИЗАЦІЇ В ПРОМИСЛОВИХ СИСТЕМАХ

В роботі проаналізовано основні особливості оброблення великих обсягів даних в промислових smart grid системах. Визначено переваги розподілених обчислень для ефективнішого аналізу інформації. Досліджено рекомендаційні алгоритми, що дозволяють обробляти великі дані швидше та точніше. Запропоновано метод розподіленої матричної факторизації для надання рекомендацій користувачам smart grid систем, що передбачає обмін публічними даними між пристроями, обробляючи приватні локально.

Запобігання можливим пограбуванням за допомогою алгоритму глибокого навчання з обробкою камерою

Останнім часом технології глибокого навчання, а саме нейронні мережі [1], привертають все більше уваги з боку бізнесу та наукової спільноти, оскільки вони допомагають оптимізувати процеси та знаходити реальні рішення проблем набагато ефективніше та економніше, ніж багато інших підходів. Зокрема, нейронні мережі добре підходять для ситуацій, коли потрібно виявляти об’єкти або шукати подібні шаблони у відео та зображеннях, що робить їх актуальними в галузі інформаційних та вимірювальних технологій у мехатроніці та робототехніці.

Implementing quality assurance practices in teaching machine learning in higher education

The development of machine learning and deep learning (ML/DL) change the skills expected by society and the form of ML/DL teaching in higher education.  This article proposes a formal system to improve ML/DL teaching and, subsequently, the graduates' skills.  Our proposed system is based on the quality assurance (QA) system adapted to teaching and learning ML/DL and implemented on the model suggested by Deming to continuously improve the QA processes.

Інформаційна технологія розпізнання статі за голосом

Розпізнавання статі людини за голосом є складною проблемою в опрацюванні мовлення. Це завдання передбачає виділення значущих ознак із мовних сигналів, класифікацію їх на чоловічі чи жіночі категорії. У статті реалізовано інформаційну технологію розпізнавання статі. Спочатку записали зразки голосу як чоловічого, так і жіночого і визначили кепстральні коефіцієнти Mel-частоти (MFCC) як характеристики. Потім, пройшовши навчання, класифікатор опорних векторів (SVM) вивчав ці функції та оцінював їх ефективність, використовуючи показники точності, запам’ятовування та показників F1.

Програмна реалізація інтелектуальної системи для вирішення проблеми «холодного старту»

За результатами дослідження описано та змодельовано один із підходів до побудови інте- лектуальної інформаційної системи для рекомендування товарів користувачам із вирішенням проблеми «холодного старту». В ході дослідження враховано переваги та недоліки методів, а також їхню сумісність під час їх комбінування, що є важливим фактором для забезпечення швидкодії системи та ефективності роботи алгоритму. Під час побудови інтелектуальної інформаційної системи здійснено реалізацію гібридного методу, а також тестування ефективності його роботи порівняно із класичним алгоритмом k-means.

Інформаційна система моніторингу відгуків у соціальних мережах для формування рекомендацій придбання товарів

У роботі описано інформаційну систему моніторингу та аналізу відгуків у соціальних мережах для формування рекомендацій щодо придбання товарів. Ця система призначена для пришвидшення та полегшення клієнтам пошуку необхідної продукції на ресурсах електронної комерції. Вдалий вибір якісного товару за бажаними критеріями вкрай важливий, оскільки це зменшує час пошуку та економить гроші клієнтів. Аналізуючи коментарі у мережі, інформаційна система рекомендує продукт, на який переважають позитивні відгуки.