consensus algorithms

Modeling the Block Formation Process in Blockchain and Its Impact on Scalability

The article investigates the process of block formation in blockchain networks and the impact of node network architecture and consensus algorithms on their scalability and performance. Analysis of blockchain system scalability is important due to problems that arise when network load increases, particularly the increase in the number of block forks and transaction confirmation times. The research focuses on studying the impact of network delays and the choice of consensus algorithm on the performance and scalability of blockchain networks.

DEVELOPMENT OF NETWORK SIMULATION MODEL FOR EVALUATING THE EFFICIENCY OF DISTRIBUTED CONSENSUS TAKING INTO ACCOUNT THE INSTABILITY OF NETWORK CONNECTIONS

The dynamic and unpredictable nature of network environments poses a significant challenge for distributed systems, particularly those relying on consensus algorithms for state management and fault tolerance. To address this challenge, this article introduces a novel simulation model designed to study the impact of unstable network connections on clusters running consensus algorithms. The model is engineered to mimic varying degrees of network instability, including latency fluctuations and connection disruptions, which are characteristic of real-world distributed systems.