дробові похідні

ADAPTIVE FRACTIONAL NEURAL ALGORITHM FOR MODELING HEAT-AND-MASS TRANSFER

A fractional neural network with an adaptive learning rate has been proposed for modeling the dynamics of non-isothermal heat and mass transfer in capillary-porous materials, taking into account the memory effect and spatial nonlocality. The proposed approach employs a decoupled neural network architecture based on loss functions that reflect the physical characteristics of the investigated process. A stepwise training method is utilized to reduce sensitivity to errors and disruptions.