ознака

Research of data mining methods for classification of imbalanced data sets

With the rapid development of information technology, which is widely used in all spheres of human life and activity, extremely large amounts of data have been accumulated today. By applying machine learning methods to this data, new practically useful knowledge can be obtained. The main goal of this paper is to study different machine learning methods for solving the classification problem and compare their efficiency and accuracy.

CONVERGENCE PROBLEM SCHEMES FOR CONSTRUCTING STRUCTURES OF LOGICAL AND ALGORITHMIC CLASSIFICATION TREES

The problem of convergence of the procedure for synthesizing classifier schemes in the methods of logical and algorithmic classification trees is considered. An upper estimate of the complexity of the algorithm tree scheme is proposed in the problem of approximating an array of real data with a set of generalized features with a fixed criterion for stopping the branching procedure at the stage of constructing a classification tree.

THE METHOD OF BOUNDED CONSTRUCTIONS OF LOGICAL CLASSIFICATION TREES IN THE PROBLEM OF DISCRETE OBJECTS CLASSIFICATION

The problem of constructing a model of logical classification trees based on a limited method of selecting elementary features for geological data arrays is considered. A method for approximating an array of real data with a set of elementary features with a fixed criterion for stopping the branching procedure at the stage of constructing a classification tree is proposed. This approach allows to ensure the necessary accuracy of the model, reduce its structural complexity, and achieve the necessary performance indicators.