recurrence sequence

ПРО МАТЕМАТИЧНУ МОДЕЛЬ ПЕРЕТВОРЕННЯ НАТУРАЛЬНИХ ЧИСЕЛ ФУНКЦІЄЮ РОЗДІЛЕНОГО ТИПУ

У цій роботі обґрунтована некоректність алгоритму, запропонованого в публікації "M. Remer.[A Comparative Analysis of the New -3(-n) - 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture. Journal of Applied Mathematics and Physics. Vol.11 No.8, August 2023"] в термінах гіпотези Коллатца. А також те, що перетворення -3(-n) - 1 не еквівалентне гіпотезі Коллатца про натуральні числа 3n + 1. Отримані результати можуть бути використані в подальших дослідженнях.

ВІДОБРАЖЕННЯ ЗАДАЧІ 3Q±1 НА КАРТІ ЯКОБСТАЛЯ

У роботі показано, що актуальним завданням є вирішення задачі C3q±​1=3q±1 припущення натуральних чисел q>1 у зворотньому напрямку n→0 розгалуження дерева Якобсталя, згідно з правилами перетворень рекурентних чисел Якобсталя. Вперше задачу Коллатца проаналізовано з точки зору зростання інформаційної ентропії після проходження так званих точок злиття (вузлів) на поліномах θ*2n траєкторіями Коллатца. Вперше проблема Коллатца розглядається з точки зору поведінки інформаційної ентропії Шеннона-Хартлі.